人工智能 (AI),包括机器学习 (ML),提供了使交通系统更安全、更公平、更可靠、更便捷、更安全、更高效和更具弹性的机会。然而,存在一些挑战,可能会阻碍人工智能在智能交通系统 (ITS) 中的成功应用以及这些好处的潜在实现。这些挑战包括但不限于围绕数据、支持技术、偏见、安全、隐私、道德和公平、泛化、模型漂移、可解释性、责任、人才/劳动力可用性和利益相关者看法的问题。虽然这些对人工智能采用和实施的挑战涉及各个领域,但本报告重点关注它们对 ITS 的影响以及机构在帮助缓解这些挑战时可以考虑的见解。表 1 总结了这 12 个挑战、它们对 ITS 的影响以及机构可以考虑的见解和经验教训。