Leibfried 等人,《自然》(2005 年) Gao 等人,《自然物理学》(2010 年) Fein 等人,《自然物理学》(2019 年)
在物理信息理论 (PIT) 中,质量、电荷、辐射和真空由三维结构表示,这些结构在四维场中具有振荡器特性,并以物理信息为特征。这些结构是通过在哈密顿原理 [3] 的条件下通过傅里叶变换 [1] [2] 从拉格朗日密度和量子力学通信关系的交换子中获得的。物理信息是封闭在四维场中的作用;它表征基本对象,在对象之间的相互作用中交换,并描述相互作用后对象属性的变化。与量子力学中基本对象(例如电子)由波函数描述不同,PIT 区分了电子核的振荡器(由质量和电荷的标量振荡器描述)和电子壳层(由静态麦克斯韦场的光子表示)。电子
摘要 — 偏置温度不稳定性 (BTI) 和热载流子退化 (HCD) 是主要的老化机制,经常通过晶体管测量或基于反相器 (INV) 的环形振荡器 (RO) 测量进行研究。然而,大规模数字电路通常用标准单元(如逻辑门)制造。在可靠性模拟流程中(例如,基于 SPICE 的标准单元特性与退化晶体管)必须对标准单元做出许多假设(例如负载电容、信号斜率、老化模型的不确定性等),并且可能导致较高的模拟不确定性。在这项工作中,我们建议用硅中的标准单元振荡器测量来验证这种标准单元特性。为此,我们提出以下新颖的贡献:1)首次基于从处理器中提取的逻辑路径对异构振荡器(一个 RO 中的多种不同单元类型)进行 BTI 和 HCD 测量。 2) 第一项工作探索了 BTI 和 HCD 对包含组合标准单元的振荡器的影响,即包含多个逻辑门的单个单元(例如与-或-反相器 (AOI) 单元和或-与-反相器 (OAI))和执行复杂操作(例如全加器)的单元。
病原性冠状病毒是对全球公共卫生的主要威胁,例如严重的急性呼吸综合症冠状病毒(SARS-COV),中东呼吸综合症冠状病毒(MERS-COV)和新出现的SARS-COV-2,是冠心病2019(Covirus 2019)(Covirus nipery 2019)。我们在本文中描述了冠状病毒3C样蛋白酶(3CLPRO)的一系列抑制剂的结构引导优化,这是一种对病毒复制必不可少的酶。优化化合物在酶测定中使用HUH-7和VERO E6细胞系中的几种人冠状病毒和基于细胞的测定中的几种人冠状病毒有效。两种选定的化合物在培养的原代人气道上皮细胞中显示出对SARS-COV-2的抗病毒作用。在MERS-COV感染的小鼠模型中,病毒感染后1天的铅化合物从0增加到100%,并减少了肺病毒滴度和肺部组织病理学。这些结果表明,这一系列化合物有可能进一步发展为针对人冠状病毒的抗病毒药物。
3. 要求:3.1 概述:单个项目要求应符合本文规定。3.2 封装:Kovar,100 至 250 微英寸镀镍。物理配置应如图 1 所示。热阻,θ JC:30 o C / 瓦。重量:最大 5 克。3.2.1 引线涂层:100 至 250 微英寸镍上镀 50 至 70 微英寸金。根据 MIL-PRF-55310 使用 Sn60/Pb40 焊料进行热焊锡是可选的,需额外付费。3.3 密封性:电阻焊接,密封,泄漏率最大为 1(10) -8 atm-cc/s。3.4 标记:零件应至少标有 Xsis P/N、Xsis 外壳代码、ESD 符号、日期代码和序列号。 3.5 绝对最大额定值:除非另有规定,绝对最大额定值应如下:电源电压 -0.5 至 +5 VDC 自然通风工作温度范围 -55 o C 至 +125 o C 存储温度 -55 o C 至 +125 o C 引线焊接温度/时间 +250 o C,10 秒
ELEC 7970 线性、非线性和混沌振荡器课程大纲 先决条件:(1) 研究生入学;(2) 对微电子、电子电路和线性微分方程有基本的了解。课程目标:(1) 研究线性和非线性系统 (2) 研究正弦、非正弦和混沌振荡器的设计,(3) 了解相关主题,如 MEMS 谐振器、FLL、PLL 和 DDS,(4) 了解混沌理论和混沌振荡器电路。讲师:Robert Dean 博士(办公室:222 Broun Hall,844-1838,deanron@auburn.edu) 课程时间:周二和周四上午 9:30-10:45,304A Ramsay Hall 办公时间:待定,需预约。教科书:无 班级网站:www.eng.auburn.edu/~deanron/LNC Oscillators.html。 注:教学笔记的 PDF 版本将发布在班级网站上。 特殊需求:任何需要特殊照顾的学生应尽快预约讨论他们的需求。特殊需求的照顾将根据奥本大学的官方政策进行。 评分政策 将根据下面显示的分数标准,以 100 分制(90-100:A、80-89:B 等)评分 家庭作业和课堂项目:100% 家庭作业和课堂项目 家庭作业和课堂项目将在整个学期内布置。这些作业的截止日期为布置作业的当天。除非有正当理由缺席(生病、工作面试、参加会议旅行等),否则不接受迟交作业。提交作业的格式必须井然有序、专业且清晰易读(标有轴、正确的单位等)。多页作业必须用装订线装订。作业必须整齐专业地写在绿色/黄色工程纸的首页上,或仅用计算机打印一面。将分配一个班级项目,每个学生将进行经批准的独立研究调查,然后通过 PowerPoint 演示文稿向全班口头介绍结果。计算机资源一些家庭作业可能需要使用工程软件工具,例如 PSPICE、MATLAB (Simlink) 和/或 EXCEL。这些工具可在整个校园的工程学院工作站上使用。
摘要:自旋效应的纳米振荡器在当前可用的CMO设备之外有望,并且有可能用于模仿计算神经元系统中神经元的功能。当它们在4-20 GHz范围内振荡时,它们有可能用于构建高速加速的神经硬件平台。然而,由于它们的产出极低的信号水平和高阻抗以及其微波范围的工作频率,因此,当使用CMOS技术实施其状态读出电路时,SHNO是否振荡是否会带来巨大的挑战。本文介绍了第一个CMOS前端读出电路,该电路在180 nm上实施,以shno振荡频率高达4.7 GHz,设法辨别了100 µV的SHNO SHNO幅度,即使对于障碍物的障碍也达到300ω,并且噪声效果高达300ω,并且噪声效果为5.3 db db 300ω。提出了该前端的设计流以及其每个块的架构。对低噪声放大器的研究在设计中的固有困难中加深了深化,满足了SHNOS的特征。
g Mn的频率p ds g ds ds ds ds ds ds ds ds ds ds ds ds ds ds ds ds ds ds ds ds ds the频率p dc p dc p dc p dc p dc p dc p d f o ff os频率的频率的变化∆ f o ff设置频率
当频率与温度的要求过于严格而无法通过基本 XO(晶体振荡器)或 TCXO(温度补偿晶体振荡器)满足时,可使用 OCXO(恒温晶体振荡器)。使用 OCXO,当振荡器外部温度发生变化时,晶体和关键电路的温度会保持恒定。使用恒温器控制振荡器内部的温度可保持此恒定温度。在 OCXO 中,环境温度的变化会被感应到,然后反馈到恒温器控制器,该控制器会持续保持振荡器外壳内部的最佳温度。OCXO 可以将晶体的固有稳定性提高 5000 倍以上。恒温器控制系统并不完善,开环增益不是无限的,恒温器(振荡器)内部存在内部温度梯度,并且在传统恒温器中,恒温器外壳外部的电路会受到环境温度变化的影响,从而“拉动”频率。
提出了一种基于新型 VCII 有源元件 [1, 2] 的线性电压控制正交振荡器 (LVCQO) 实现方法,该元件与现成的模拟乘法器设备 [3] 适当耦合。此处的设计拓扑利用模拟乘法器设备,通过其直流控制电压 kV(k ≡乘法常数 = 1/直流伏)[3] 方便地调整电路极点频率。文献表明,近期文献 [4-19] 中提出了具有电子可调特性的此类振荡器设计,如表 I 所示;其中只有少数表现出线性可调特性。先前此类拓扑中的设计使用某些设备偏置电流 (I b ) 或设备跨导参数 (gm ) 或被动调谐 [20];因此,设计需要额外的电流处理电路,这会引起热 (VT ) 和静态耗散问题。提出的振荡器设计实现方法利用一对新型 VCII,它们由一对模拟乘法器适当调谐