此预印本版的版权持有人于2025年2月23日发布。 https://doi.org/10.1101/2025.02.19.639065 doi:Biorxiv Preprint
Natacha Cordonier,Marion Fossard,YvesTillé,Maud Champagne-Lavau。探索获得性脑损伤后认知务实的异质性:提示理解的聚类分析。《美国语言病理学杂志》,2023,32(6),第2752-2767页。10.1044/2023_AJSLP- 22-00389。hal-04330850
用您自己的话:介绍自己,组织和您提供的DMHA服务。您服务了多少人?我的名字叫南希·霍尔斯(Nancy Haws),我是肯尼迪集体(TKC)的首席发展官,是501(c)(3),其任务与74年前伊夫琳·肯尼迪(Evelyn Kennedy)成立该机构时的任务相同:为残疾人创造途径,使残障人士蓬勃发展和壮成长。The DMHAS services we provide include: • Autism Learning Network • Acquired Brain Injury Services • Behavioral Supports • Day Support Options • Community Residential Supports • Community Partner Work Incentive Counseling • Employment Network For Ticket To Work • Workforce Development Support • Transition Services • Social & Leisure Services • Individualized Home Support Program • Mobility Services & Transportation Assistance The Kennedy Collective serves individuals with cognitive disabilities throughout Fairfield County and the surrounding areas.在2024年日历年中,TKC服务:移动服务200人加入了我们的旅行培训计划。160人帮助了ADA Paratransit申请。150人参加了虚拟和面对面的演讲,以及现场活动外展。
引言:心脏主要通过脂肪酸 (FA) 氧化获取能量。然而,脂质摄取与脂肪酸氧化的脱钩会导致心脏脂质异常蓄积和脂毒性,尤其是在心力衰竭的情况下。CD36 是心脏组织中脂肪酸摄取的关键介质。研究表明,CD36 基因缺失可预防肥胖和糖尿病小鼠模型中心脏肥大和功能障碍的发生。然而,CD36 敲低或敲除在压力超负荷条件下心脏功能障碍发生和进展中的确切作用仍不清楚。目的:本研究旨在探讨 CD36 部分敲低在预防压力超负荷心脏脂毒性和功能障碍方面的可行性。方法:分别通过基因缺失和 AAV-9 CD36 shRNA 注射,诱导心脏特异性 CD36 完全敲除 (CKO) 和部分敲低 (CKD) 小鼠。 CD36 CKO 和 CKD 小鼠均接受横主动脉缩窄术 (TAC) 诱导心脏压力超负荷。通过超声心动图测量心脏功能,并检测心脏脂质积聚、脂肪酸氧化和代谢状态。结果:TAC 手术诱导了严重的心脏功能障碍和病理性心脏重塑,并伴有心肌内脂质沉积异常和脂肪酸氧化能力受损。CD36 CKO 减轻了衰竭心脏的异常脂质积聚,同时加剧了 TAC 引起的心脏能量缺乏和氧化应激。相反,CD36 CKD 改善了 TAC 诱导的小鼠心脏脂质积聚和过度氧化应激,同时改善了线粒体呼吸功能。此外,CD36 CKD 诱导糖酵解通量显著增加,进入 TCA 循环,从而维持 ATP 生成。因此,CD36 CKD 阻止了压力超负荷引起的心脏肥大和功能障碍的发展。结论:本研究发现,CD36 CKD(而非 CD36 CKO)能够保护压力超负荷心脏免受心脏功能损害。调控 CD36 是一种可行的策略,可以达到维持心脏能量供应的最佳状态,同时避免脂肪毒性。
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
以少突胶质细胞脱髓鞘病变为主,伴有轴索水肿,临床表现包括嗜睡、恶心、烦躁,此期积极治疗后多可痊愈。晚期延迟性RIBI伴有血管异常改变和脱髓鞘改变(6),白质坏死常发生于照射后6个月(7,8),此期常为不可逆性、进行性进展期(图1)。根据治疗放射的体积范围,晚期RIBI(3个月至数年)可伴有局部神经组织异常、颅内压增高,仅根据临床表现难以确诊。此期CT图像上白质低密度区增多,有不规则强化,病灶周围有弥漫性水肿,有不同程度的占位效应(9),核磁共振成像(MRI)亦有类似改变。 RIBI在MRI下通常表现为周围强化,伴有轻微占位效应及周围水肿。RIBI的重要微观改变包括血管纤维样坏死、凝固性坏死、周围反应性胶质增生、血管玻璃样变性伴管腔狭窄(10)。最明显的临床特征是性格改变、记忆力减退、注意力下降、痴呆等。主要表现为:
摘要。在脑图像分析中,许多当前的管道对病变的存在不具有鲁棒性,从而降低了其准确性和鲁棒性。例如,处理病变时,经典医学图像处理操作(如非线性配准或分割)的性能会迅速下降。为了尽量减少它们的影响,一些作者提出修复这些病变,以便可以使用经典管道。然而,这需要手动划定感兴趣的区域,这很耗时。在本文中,我们提出了一个深度网络,它能够自动盲目地修复脑图像中的病变,从而使当前管道在病理条件下稳健地运行。我们使用 SPM12 管道和我们自动修复的图像证明了脑分割问题中改进的鲁棒性/准确性。关键词:病变修复、MRI、深度学习、稳健分割。
脊髓损伤(SCI)是中枢神经系统的严重疾病,其特征是患病率高和严重的残疾,对患者及其家人造成了重大负担。近年来,由于其优势,包括低成本,高安全性,易于实施和重大疗效,运动训练在SCI的治疗方面已变得突出。然而,关于各种运动训练方式和强度对SCI患者功能恢复的影响的共识仍然难以捉摸,与高强度运动训练(HIET)相关的功效和风险(HIET)是持续辩论的主题。一些研究表明,与中度或低强度的运动训练相比,HIET具有卓越的治疗益处,例如增强的心血管应激反射敏感性和增加神经营养因素的释放。尽管如此,HIT可能会带来风险,包括继发性伤害,炎症反应增强和跌倒。本研究回顾了HIET对SCI患者各种身体系统的正面和负面影响,重点介绍了神经可塑性和免疫调节等机制,以提供其前瞻性临床应用的理论基础和证据。此外,分析了现有研究的局限性,以告知未来研究的建议和指导。
抽象目标。可以通过实验和建模的结合来理解辐射诱导的DNA损伤的机制。当前,大多数生物学实验是通过辐照整个细胞群来进行的,而辐射诱导效应的建模通常是通过蒙特卡洛模拟进行的,其轨道结构代码与单细胞核的逼真的DNA几何形状结合。但是,两种方法之间的尺度差异阻碍了直接比较,因为由于能量沉积的随机性,细胞群中的剂量分布不一定均匀。因此,这项研究提出了Minas Tirith工具,以模拟辐射诱导的DNA损伤在细胞种群中的分布。方法。所提出的方法基于使用Geant4-DNA Monte Carlo Toolkit生成的微渗透参数和DNA损伤分布的预先计算数据库。首先,针对特定吸收的剂量D分配了一个特定的能量Z,在微观法形式主义之后进行了ABS。然后,根据特定能量Z分配了每个细胞的DNA损伤事件,尊重其发生的随机特征。主要结果。这项研究通过将其结果与使用Geant4-DNA轨道结构代码和基于Geant4-DNA的基于GEANT4-DNA的模拟链进行比较的结果来验证了Minas Tirith工具。明显的能力。此外,该工具可以在建模和生物学实验之间进行更直接的比较。在人群中剂量分布以及DNA损伤量计算的情况下,比较的不同元素表明Minas Tirith和Monte Carlo模拟之间的一致性。minas tirith是一种在细胞种群水平上计算辐射诱导的DNA损伤的新方法,与使用轨道结构代码获得的辐射剂量相比,该方法促进了合理的模拟时间。
分子对遗传毒性应激的反应,例如电离辐射,复杂复杂,涉及数百个基因。靶向内源基因是否可以增强对电离辐射的阻力仍有待探索。在本研究中,我们利用CRISPR/DCAS9技术的优势中度过表达RPA1基因,该基因编码了复制蛋白A(RPA)的关键功能亚基。RPA是一种高度保守的异三个单链DNA结合蛋白复合物,参与了DNA复制,重组和修复。RPA1的功能障碍对细胞和生物有害,并且可能导致对许多应激因素的抗药性降低。我们证明,过表达RPA1的HEK293T细胞通过伽马辐射对细胞杀死的抗性增强。使用碱彗星测定法,我们显示出在RPA1过表达细胞中γ辐照后,DNA断裂的显着加速。然而,在RPA1过表达的情况下,DNA损伤的自发速率也更高,这表明由于RPA蛋白的活性升高而导致复制误差的处理改变。此外,对具有不同水平DNA损伤的细胞分布的分析显示了RPA1过表达与DNA修复动力学之间的联系,在差异损坏的细胞亚群中。我们的结果提供了有关DNA损伤应力反应的知识知识,并表明通过靶向改变单个基因表达来增强放射线的概念是可行的,但是应考虑和评估不希望的后果。