- 开发了转换器和逆变器的损耗模型,以及用于计算电缆损耗的功率流模型。- 在交流体系结构和直流骨干结构之间进行了比较研究,最初涉及发生的损失。随后,研究了能源和存储单元的聚集对自给自足和自我消费的影响。- 直流主链的工作电压在很大程度上决定了电缆损耗和转换损耗。此外,根据DC主链的拓扑结构,可以提供一个(单极)或两个(双极)不同的电压。电压不平衡,但可以使用电力电子设备来降低电压失衡。所有这些方面都是通过整体方法研究的,以确定最合适的工作电压和拓扑。- 尺寸DC电缆的尺寸与已经存在的标准的AC电缆相比,需要采用不同的方法。此外,在某些情况下,DC主链的电缆只能在其最大负载条件下工作。使用概率方法,将研究电缆的热负载能力,以确定技术经济上最佳的电缆部分。
具有吸收特性和不规则几何形状的系统对波的衍射和吸收是一个悬而未决的物理问题。同时,不规则吸收体已被证明非常有效�1�。一个更容易实现且密切相关的目标是理解包含不规则形状吸收材料的受限系统中的波振荡。从理论的角度来看,困难在于部分传播发生在波算子为非厄米的有损材料中。本文发现,在包含不规则形状吸收材料的谐振器中,出现了一种新型的局部化。这种我们称之为“跨”局部化的现象描述了这些模式同时存在于无损和有损区域的事实。它们都是有损耗的,并且与空气中的源很好地耦合。对声能时间衰减的数值计算表明,当吸音装置呈现非常不规则的形状时,其效果确实更好,而这与跨界局部化的存在直接相关。� 1 � 分形墙,Colas Inc. 产品,法国专利 N0- 203404;美国专利 10”508,119。
GaN 在家用电器中的应用势头强劲,未来四年将快速增长,预计 2023 年至 2029 年的复合年增长率将达到 121% [17]。在洗衣机、冰箱和其他家用电器等应用中采用 GaN 的驱动力之一是需要遵守能源法规并通过主要市场的能源标签进行差异化。能源标签根据家用电器的能耗对其进行评级,是消费者购买决策的关键因素。为了获得最高评级,制造商必须在保持高性能水平的同时降低能耗。一个潜在的解决方案是提高家用电器内部的电源转换效率。GaN 技术完全有能力在这一努力中发挥关键作用。GaN 提供的效率提升非常显著 [18]。例如,在 800 W 的应用中,GaN 可以实现 2% 的效率提升 [19],这可以帮助制造商获得令人垂涎的 A 级评级。这是通过 GaN 的更快切换能力实现的,因此,它更高效,并且因此满足了高效电机对降低损耗的性能需求。
提出了一种量子增强、无闲散传感协议,用于在有噪声和有损耗的情况下测量目标物体对探测器频率的响应。在该协议中,考虑了一个嵌入热浴中的具有频率相关反射率𝜼(𝝎)的目标。目的是估计参数𝝀 = 𝜼(𝝎 2) − 𝜼(𝝎 1),因为它包含不同问题的相关信息。为此,采用双频量子态作为资源,因为有必要捕获有关该参数的相关信息。对于双模压缩态(HQ)和一对相干态(HC),在假设的𝝀 ≈ 0 的邻域中计算相对于参数𝝀的量子费希尔信息H,𝝀的估计显示出量子增强。这种量子增强会随着被探测物体的平均反射率而增长,并且具有抗噪声性。推导出最佳可观测量的显式公式,并提出了基于基本量子光学变换的实验方案。此外,这项工作为雷达和医学成像(特别是在微波领域)的应用开辟了道路。
从长途光纤链路到短距离无线网络,数字通信系统越来越依赖于光子集成电路。然而,对更高带宽的追求正在将当前的解决方案推向极限。硅光子平台因其可扩展性和成本效益而备受赞誉,它依赖于诸如硅上 III-V 族元素异质外延[ 3 ]或在 SOI 波导上放置锗鳍片[ 1 ]等解决方案,以实现超高速应用。在所有硅光子技术中,氮化硅 (SiN) 材料平台具有一些独特的优势:它们提供非常低损耗的波导,由于非常高 Q 值的谐振器而具有非常好的滤波器,并且由于没有双光子吸收(与硅相比),因此可以处理非常高的功率。然而在 SiN 上,无法直接生长。一种可能的解决方案是将 III-V 族元素晶圆键合到 SiN 波导上[ 2 ]。在这项工作中,我们提出了一种多功能且可扩展的方法,通过微转印(µTP)单行载流子(UTC)光电二极管在 SiN 上创建波导耦合光电探测器。
摘要:硫族相变材料 (PCM) 在非挥发性的非晶态和结晶态之间具有很大的光学特性差异,引起了人们对其在长期接近零功耗的超紧凑光子集成电路中的应用的浓厚兴趣。然而,在过去十年中,PCM 集成光子器件和网络受到各种常用 PCM 本身巨大光学损耗的困扰。在本文中,我们重点研究了一种新兴低损耗相变材料 Sb 2 Se 3 在硅光子平台上的沉积、特性和单片集成。蒸发的 Sb-Se 薄膜的非晶相和结晶相之间的折射率对比度被优化到 0.823,而椭圆偏振法测得的消光系数保持小于 10 − 5。当集成在硅波导上时,非晶薄膜引入的传播损耗可以忽略不计。结晶后,磁控溅射Sb-Se贴片覆盖硅波导的传播损耗低至0.019 dB/µm,而热蒸发贴片覆盖硅波导的传播损耗低于0.036 dB/µm。
摘要:可见波长超大规模集成 (VLSI) 光子电路有可能在量子信息和传感技术中发挥重要作用。可扩展、高速、低损耗的光子网格电路的实现取决于可靠且精心设计的可见光子元件。本文我们报告了一种基于压电驱动机械悬臂的低压光学移相器,该移相器是在 CMOS 兼容的 200 毫米晶圆可见光子平台上制造的。我们展示了差分操作中 6 V π -cm 的线性相位和幅度调制、-1.5 dB 至 -2 dB 的插入损耗以及 700 nm - 780 nm 范围内高达 40 dB 的对比度。通过调整选定的悬臂参数,我们演示了一个低位移和一个高位移装置,两者均表现出从直流到峰值机械共振的几乎平坦的频率响应,分别在 23 MHz 和 6.8 MHz,通过共振增强 Q~40,进一步将工作电压降低至 0.15 V π -cm。
摘要 能源存储系统将在未来智能电网的建立中发挥关键作用。具体而言,将存储系统集成到电网架构中可以实现多种目的,包括通过增加可再生能源的使用来处理能源供应的统计变化,以及通过负荷调度来优化日常能源使用。本文重点介绍如何使用非线性凸优化来减少电网失真。具体来说,分析存储模型与基于家庭社区社会经济信息的负荷预测技术相结合使用。结果表明,所提出的负荷预测技术可显著减少预测误差(相对减少高达 14.2%),而基于非线性凸优化的所提出的存储优化可使理想存储的峰值与平均值之比降低 12.9%,考虑损耗的存储的峰值与平均值之比降低 9.9%。此外,结果表明,当家庭社区使用储能时,每个家庭的储能规模为 4.6-8.2 kWh,可以实现最大的改进,这显示了共享储能的有效性以及家庭社区的负荷预测。
开发下一代光子集成电路 在过去二十年里,硅光子学 1,2 已经从学术研究转向广泛的工业应用。然而,尽管硅光子学 3 取得了商业上的成功,被用于数据中心的收发器,但硅并不是光子学和光学的理想材料。硅的带隙为 1 eV,因此不能用于可见光的生成和处理 4,5 ;另外,硅不能承受高光功率。同样,即使在最先进的全球代工厂的硅光子商业生产线中,使用数十亿美元的制造设备,损耗水平也只有每厘米 1dB。事实上,在芯片中获得超低损耗是极具挑战性的。对如此低损耗的追求不仅仅是一项学术努力:从历史上看,高锟的工作还为损耗仅为 1dB/km 的光纤奠定了基础,这导致了 2008 年诺贝尔物理学奖并彻底改变了通信领域 6 。然而,直到最近,低损耗集成光子电路的进展几十年来一直停滞不前——在 dB/cm 的水平。然而,芯片上的超低传播损耗对于众多未来应用至关重要。
摘要 碳化硅 (SiC) MOSFET 属于宽带隙器件家族,具有低开关和传导损耗的固有特性。SiC MOSFET 在较高工作温度下的稳定运行引起了研究人员对其在高功率密度 (HPD) 功率转换器中的应用的兴趣。本文介绍了基于 SiC MOSFET 的两相交错升压转换器 (IBC) 的性能研究,用于调节多电飞机 (MEA) 中的航空电子总线电压。已经开发了 450W HPD、IBC 进行研究,当由 24V 电池供电时,可提供 28V 输出电压。提出了一种 SiC MOSFET 的栅极驱动器设计,可确保转换器在 250kHz 开关频率下运行,降低米勒电流和栅极信号振铃。峰值电流模式控制 (PCMC) 已用于负载电压调节。将基于 SiC MOSFET 的 IBC 转换器的效率与 Si 转换器进行了比较。实验获得的效率结果表明,SiC MOSFET 是重负载和高开关频率操作下的首选器件。关键词:高功率密度 (HPD)、交错升压转换器 (IBC)、多电飞机 (MEA)、峰值电流模式控制 (PCMC)、碳化硅 (SiC)