硅光子学产业的快速发展有望带来非电子技术前所未有的制造经济。除了大批量生产的潜力之外,硅光子学还为大规模光子处理架构开辟了可能性,而这在光纤或 III-V 族平台中是无法想象的 [1、2、3]。所有光子系统都需要光源。由于硅具有间接带隙,因此在室温下不易发光。因此,硅光子学的大部分研究都使用与光纤耦合的片上外部光源。使用外部光源会带来光纤封装和光纤到芯片插入损耗的巨大负担。人们已经投入了大量研究来开发用于硅光子的集成光源 [4]。每种方法都有优点和缺点。这些方法包括稀土元素掺杂(低亮度)、III-V 量子阱的晶圆键合 [ 5 ](非单片集成步骤)、III-V 量子点的外延生长 [ 6 ](专门的外延步骤)和锗的带隙工程 [ 7 ](低屈服应变工程)。所有这些方法
2 /𝑎1,带有𝑎1= 2.5×2 = 0.8 𝜆 𝜆。所有波导壁都被视为PEC边界,而𝜆 𝜆是NZI频率下的自由空间波长。(b) - (d)时间平均poynting载体场(𝐒𝐒,功率流)的实际部分的幅度和矢量图,将其标准化为其入射对应物,对于(b)𝛿 = 0(b)𝛿 = 0(无损耗),(c)𝛿 = 0.01,和(d)𝛿 = 0.1。这些数值结果表明,功率流的幅度在有损耗的EMNZ介质中表现出指数衰减。然而,归一化的矢量分布在耗散阻尼的情况下具有鲁棒性,并且在此处研究的参数范围内保留了涡度的不存在。所考虑的损失因素是NZI介质的超材料实现的现实性,包括色散波导和全dielectric光子晶体,以及一些最高质量的连续培养基,例如硅碳化硅(SIC),其特征在于𝜀 =𝑖=𝑖0.03。但是,基于掺杂的半导体的其他实现(例如基于掺杂的半导体)表现出更高的损失𝜀 = 𝑖0.2〜0.5。
频带级联激光器(ICL)由于低功耗和与硅光子整合的兼容性,尤其是对于痕量气体传感,因此在中红外应用中变得越来越有价值。ICL已在3 - 6 L m范围内证明了室温连续波动,其性能在3.3 L m左右。在更长波长下ICL性能的关键因素是光损失,即是由间隔带过渡引起的。这些损失随着活性区域的孔浓度而增加,从而导致ICL中光损耗的电流依赖性明显。传统方法从参数(例如斜率效率或阈值电流)中从长度依赖性变化中推断出光损失需要恒定光损耗。在这项研究中,我们提出了一种直接的光学传输测量技术,以确定波导损耗。我们的实验证实,随着电流密度,大大增加了波导损失,直接影响ICL的量子效率。与传统方法相比,这种方法提供了对光损失的精确评估,并具有功能替代性,可以解决假设恒定损失的局限性,并为各种波长提供了对ICL性能的洞察力。
摘要:由于电压不稳定问题和电力损耗的增加,尼日利亚电网面临着电力供应公司面临的严峻运营挑战。以尼日利亚 330Kv 电网为例,对拟议的电力损耗减少系统进行了评估,在 MATLAB/SIMULINK 编程环境中创建了尼日利亚 330Kv 输电系统的 Simulink 模型,并集成了拟议的神经网络控制 TCSC。在尼日利亚 330Kv 输电系统的 MATLAB/SIMULINK 模型中,使用遗传算法对 FACTS 设备进行最优放置。所提出的方法已在 IEEE 67 总线系统、39 个负载点、111 条输电线路和 14 台发电机上实施。对安装 TCSC 的总线负载的每种变化进行了仿真和评估;运行负载流以确定总系统损耗。结果表明,所提出的神经网络控制 TCSC 实现了平均有功功率损耗减少 13.11378 (pu) 和平均无功功率损耗减少 78.16378 (pu)。这表明 TCSC 降低了系统中的有功和无功功率损耗。
这项工作描述了用溶胶 - 凝胶过程和控制结晶的高折射率和低散射的二氧化钛膜的精心设计。使用椭圆测量法,分光光度计,X射线衍射和电子显微镜,研究了融合二氧化硅对熔融二氧化硅上的溶胶 - 凝胶加工钛涂层的晶体结构的发展。它表明,可以分别以0.5%和1%的相关光损失为2.5和2.7折射率的解剖酶和金红石涂层,这对于集成光子学的应用是极好的妥协。这些演变与热诱导的传质和热退火期间发生的相变有关,这涉及首先涉及催化酶多向纳米晶体的成核生长和烧结,然后转化为金红石多偏的纳米晶体。同时,通过扩散的烧结来产生微米大小的金红石单晶和单方面的血小板斑点,带有(110)面的(110)面部与表面消耗周围的解剖酶和金红石纳米晶体的面孔,表现为2.73和1.2%的折射率。这些血小板的形成受表面能的控制,并导致光损耗的增加。
背景:对话代理(CAS)或聊天机器人是模仿人类对话的计算机程序。他们有可能通过自动化,可扩展和个性化的心理治疗内容来提高心理健康干预措施的机会。但是,包括CAS提供的数字健康干预措施通常具有较高的流失率。识别与损耗相关的因素对于改善未来的临床试验至关重要。目的:本综述旨在估算CA剥夺的心理健康干预措施(CA干预措施)中的总体和差异率,评估研究设计和与干预相关方面对损耗的影响,并描述旨在减少或减轻研究损耗的研究设计功能。方法:我们搜索了PubMed,Embase(Ovid),Psycinfo(OVID),Cochrane Central对照试验和Web Science登记册,并于2022年6月对Google Scholar进行了灰色文献搜索。我们包括了随机对照试验,这些试验将CA干预措施与对照组进行了比较,并排除了仅持续1次会议的研究,并使用了OZ干预的巫师。我们还使用Cochrane的偏见工具2.0的Cochrane风险在纳入的研究中评估了偏见的风险。随机效应比例荟萃分析用于计算干预组中的合并辍学率。随机效应荟萃分析用于比较干预组中的损耗率与对照组中的损耗率。我们使用叙事评论来总结发现。没有参与者级别的因素可靠地预测损耗。结果:从同行评审的数据库和引文搜索中检索了4566个记录,其中41(0.90%)随机对照试验符合纳入标准。干预组的荟萃分析总损耗率为21.84%(95%CI 16.74%-27.36%; I 2 = 94%)。持续≤8周的短期研究表明,比持续> 8周(26.59%,95%CI 20.09%-33.63%; i 2 = 93.89%)的长期研究较低的损耗率(18.05%,95%,95%CI 9.91%-27.76%; I 2 = 94.6%)。干预组参与者比对照组参与者更有可能在短期(log赔率比1.22,95%CI 0.99-1.50; i 2 = 21.89%)和长期研究(对数优势比1.33,95%CI 1.08-1.65; i 2 = 49.43%)。与较高损耗相关的与干预相关的特征包括无人支持的独立CA干预措施,没有症状跟踪器功能,没有CA的视觉表示以及将CA干预措施与候补名单控件进行比较。结论:我们的结果表明,在短期研究中,大约五分之一的参与者将退出CA干预措施。高异质性使得很难概括发现结果。我们的结果表明未来的CA
振幅[3,4]光散射的方向性[5,6]自旋[7,8]和轨道角动量[9,10],而不受金属基方法固有材料损耗的限制。特别是,由近场增强驱动的应用,如生物分子传感,依赖于高共振品质因数(Q)(定义为共振波长除以线宽),因此需要高的电磁近场强度来实现最大样本灵敏度。[11,12]从米氏理论等中得知,共振品质因数和共振器折射率[13]之间的固有相关性,因此推动了基于高折射率材料体系(如硅[14,15]锗[16,17]或磷化镓)的全电介质纳米光子学的发展。 [18,19] 尽管这些材料在近红外 (NIR) 和红外 (IR) 光谱区域具有出色的高 Q 共振特性,但由于它们的带隙能量处于中间水平,因此在整个可见光谱范围内都伴随着较高的材料固有带间吸收损耗。由于这些基本的材料限制,在整个可见光谱范围内都缺乏无损高折射率材料。[20–23] 特别是,对于可见波长范围,存在大带隙和无损材料的竞争
量子安全直接通信(QSDC)可以利用量子力学的特性保证信息在不使用密钥的情况下直接通过量子信道传输时的安全性。然而,QSDC的传输速率受到单光子探测器(SPD)的死时间和长距离信道损耗的限制。为了克服这种有限的传输速率,我们提出了一种基于高维单光子的QSDC协议,该协议应用了两个光学自由度:时间和相位状态。首先,提出了一种考虑死时间的N维时间和相位状态生成方法,以最小化传输信息的测量损失。其次,在两类量子态中,测量效率相对较低的相位状态仅用于窃听检测,时间状态用于使用差分延迟时间基于二进制的编码技术发送信息。最后,我们提出了一种有效的方法来测量N维时间和基于相位的量子态并恢复经典比特信息。本研究对各种攻击进行了安全性分析,并通过仿真验证了传输速率的提升效果。结果表明,与传统的DL04 QSDC相比,我们的方案可以保证更高的安全性和传输速率。
在高峰期管理电力对电力公司构成挑战。在高峰期,消费的急剧上升会导致功率损耗的指数增加,这对整体电源成本有直接影响。此外,这些需求的急剧增加可能会使电网不稳定。最近,诸如阿拉巴马州电力公司(Alabama Power)等电力公司引入了动态(或使用时间)定价量表,以鼓励消费者将其负载转移到非高峰时间。,阿拉巴马州的电力没有收取统一的费用,而是根据消耗何时消耗电力向消费者收取费用。与非高峰时间相比,在高峰时间内使用功率将导致更高的价格。在夏季,这种价格上涨的价格可能超过了非高峰时间的三倍。如果消费者可以找到利用这种动态定价的方法(即,在高峰时段不要使用电力),则消费者的电费将大大降低,电力公司的线路损失和改善的电网稳定性将更少。本文的研究重点是开发和测试微电网系统。微电网有望为客户提供更多以低成本使用电力的自由,并减少电力公司的电力损失。此外,还进行基于动态速率的成本分析以研究拟议系统的可行性。
远距离传递量子信息的能力在量子科学与工程中至关重要 1 。尽管量子通信的某些应用(如安全量子密钥分发 2,3 )已经成功部署 4–7 ,但它们的范围目前受到光子损耗的限制,并且无法使用直接的测量和重复策略进行扩展,而不会损害无条件安全性 8 。或者,利用中间量子存储节点和纠错技术的量子中继器 9 可以扩展量子通道的范围。然而,它们的实施仍然是一个悬而未决的挑战 10–16 ,需要高效和高保真量子存储器、门操作和测量的组合。在这里,我们使用集成在纳米光子金刚石谐振器 17–19 中的单个固态自旋存储器来实现异步光子贝尔态测量,这是量子中继器的关键组件。在原理验证实验中,我们展示了高保真操作,该操作在兆赫时钟速度下运行时有效地实现了量子通信,其速率超过了理想的等效损耗直接传输方法。这些结果代表着朝着实用量子中继器和大规模量子网络迈出了关键一步 20,21 。