目前,涡轮增压器和电动增压器、飞轮储能系统、涡轮分子泵、航空发动机、高速主轴、气体压缩机、微型涡轮机等各种应用都需要高速电机。它们的运行速度通常高于10krpm,功率从0.1到数百千瓦不等,转速与功率平方根的乘积大于1×105rpm√𝑘𝑊。由于高速电机需要克服更多的挑战,例如更高的频率、更大的损耗、更高的温升、更强的机械应力和振动。幸运的是,材料和电机驱动领域的最新进展为解决这些挑战提供了新的解决方案,并取得了突出的成果:高性能材料,如具有高载流能力的超导体、具有更高磁饱和能力的铁磁材料、具有高剩磁的永磁材料和双相铁磁材料在高速电机中不断涌现和研究;基于宽带隙半导体器件的电机驱动可以实现更高的开关频率、更高的工作温度和更低的损耗,因此,将其应用于高速电机系统可以提高效率、动态和稳态控制性能。此外,人工智能方法和3D打印技术等新技术为应对挑战带来了更多机会。先进材料和技术在高速电机中的应用要求在设计和控制层面取得进展,包括但不限于创新的电机结构、新一代设计方法、更有效的冷却和热管理、损耗、噪声和振动降低方法、机械优化、基于宽带隙半导体的电机驱动以及先进的控制技术和算法。本期特刊的目标就是讨论该领域的进展。
• 缺乏空中优势 • 有争议的通信/网络降级 • 高度机动的战场 • 更致命的战场 • 不断变化的环境(城市、北极、地下等) • 极具挑战性的后勤 • 医疗资产的损耗 • 大量的伤亡(>10,000/60 天)
传统的测量爱因斯坦-波多尔斯基-罗森型连续变量量子纠缠的方法依赖于平衡零差检测,而平衡零差检测对由于探测器量子效率、被检测场与本振模式失配等因素引起的损耗耦合进来的真空量子噪声非常敏感。本文提出并分析了一种利用高增益相敏参量放大器辅助平衡零差检测实现的测量方法。相敏放大器的使用有助于解决因检测损耗引起的真空量子噪声。此外,由于高增益相敏放大器可以耦合两种不同类型的场,因此所提方案仅使用一次平衡零差检测便可揭示两种不同类型场之间的量子纠缠。进一步分析表明,在多模情况下,所提方案也优于传统方法。这种测量方法在涉及连续变量测量的量子信息和量子计量学中有着广泛的应用。
○在SoftMax中,添加一个新的数据点使SoftMax的分母散布,这会影响所有概率。○通过添加数据点,SoftMax损耗可能会更改,因为新数据点的正确类的日志概率可能与现有数据点的正确类的日志概率不同。
自诞生以来,立方体卫星就成为了太空网络和探索领域最令人兴奋的技术,因为与同类传统卫星相比,立方体卫星的成本和复杂性更低 [1]。这使得太空任务的设计和运行周期成倍加快,也增加了人们对太空领域高风险企业的激励 [2]。这些突破为私有化太空网络时代铺平了道路,例如 SpaceX Starlink 星座 [3]。要充分释放太空网络的潜力,需要更高的数据速率和高度紧凑的设备 [4]。从这个角度来看,太赫兹 (THz) 频段(从 0.1 THz 到 10 THz)是一种巨大的频谱资源,可用于开发可用于下一代立方体卫星的无线技术 [5]。 THz 波段技术非常适合立方体卫星,因为它具有可维持极高数据速率的大型连续带宽,以及 THz 频率的亚毫米波长,这自然会产生高度紧凑的设备 [6]。然而,THz 频率下非常高的路径损耗仍然是电磁 (EM) 频谱这一部分未被充分利用的关键原因。一方面,THz 频率会因与特定频率下的某些气体分子(主要是水蒸气)的共振峰而遭受吸收损耗 [7]。尽管如此,如 [8] 中详细讨论的那样。太空中没有大气介质,因此吸收损耗减少,使 THz 波段成为卫星间通信链路的理想选择。同时,由于低地球轨道 (LEO) 内的大气存在减少,可以通过适当选择避免这些吸收峰的设计频率来减轻上行链路和下行链路期间的吸收损耗。另一方面,THz 频率的波长非常小,导致
分布式发电 (DG) 单元是发电厂,对当前电力系统网络的架构非常重要。增加这些 DG 单元的好处是增加网络的电力供应。但是,如果分配和/或大小不正确,安装这些 DG 单元可能会产生不利影响。因此,需要对它们进行最佳分配和大小调整,以避免电压不稳定和投资成本高昂等情况。本文开发了两种基于群的元启发式算法,即粒子群优化 (PSO) 和鲸鱼优化算法 (WOA),以解决输电网络规划中 DG 单元的最佳位置和大小问题。支持技术损耗敏感度因子 (LSF) 用于识别潜在母线,以实现 DG 单元的最佳位置。在两个 IEEE 母线测试系统(14 和 30 母线)上确认了算法的可行性。比较结果表明,两种算法都能产生良好的解决方案,并且在不同指标上彼此优于对方。 IEEE 14 母线和 30 母线测试系统中,考虑技术经济因素后,WOA 实际功率损耗减少量分别为 6.14 MW 和 10.77 MW,而 PSO 实际功率损耗减少量分别为 6.47 MW 和 11.73 MW。在两个母线系统中,PSO 的总 DG 单元尺寸更小,分别为 133.45 MW 和 82.44 MW,而 WOA 分别为 152.21 MW 和 82.44 MW。本文揭示了 PSO 和 WOA 在输电网络中 DG 单元优化定型应用中的优势和劣势。
高介电材料的研究最近引起了极大的关注,这是用于应用金属构造器金属(MIM)电容器的关键被动组件。在本文中,通过原子层沉积技术(ITO)氧化锡(ITO)预涂层的玻璃底物和氮化钛(TIN)涂层的SI覆盖的Si底物在本文中制备了50 nm厚的Al 2 O 3薄膜。光刻和金属提升技术用于处理MIM电容器。用探针站的半导体分析仪用于使用低中等频率范围进行电容 - 电压(C-V)表征。MIM电容器的电流 - 电压(I-V)特性在精确源/测量系统上测量。在电压范围从-5到5 V的玻璃上,Al 2 O 3膜在玻璃上的性能从10 kHz到5 MHz。Au/Al 2 O 3/ITO/玻璃MIM电容器在100 kHz时显示1.6 ff/µm 2的电容密度为1.6 ff/µm 2,在100 kHz时损耗〜0.005,在1 mv/cm(5 v)下,在100 kHz时损耗〜0.005,泄漏电流为1.79×10 -8 a/cm 2。Au/Al 2 O 3/TIN/SI MIM电容器在100 kHz时的电容密度为1.5 ff/µm 2,在100 kHz时损耗〜0.007,较低的泄漏电流为2.93×10 -10 -10 -10 -10 A/cm 2,在1 mv/cm(5 v)处于1 mv/cm(5 v)。获得的电源可能表明MIM电容器的有希望的应用。关键字
摘要 - 交流损耗是脉冲,超级导管iTer线圈的主要热负荷,因此是冷冻系统和超导体的设计驱动器。在过去几年中,从次要的链,电缆,长长的“线圈样”导体(所谓的插入型线圈)到完成的线圈的重要性,从iTer线圈的组件进行广泛的AC丢失表征,在过去的几年中进行了。 最近对第一个中央电磁阀(CS)模块进行了工厂测试,其中包括代表操作范围的交流损耗测试。 AC损失的建模对于准备ITER TOKAMAK操作和调试至关重要。 以下删除ITER CS线圈的交流损耗模型。 此类模型必须易于实现,并快速执行,以允许模拟较长的ITER等离子体方案。 本文解释了所应用的简化,并讨论了含义。 对模型对实验数据进行了验证。从次要的链,电缆,长长的“线圈样”导体(所谓的插入型线圈)到完成的线圈的重要性,从iTer线圈的组件进行广泛的AC丢失表征,在过去的几年中进行了。最近对第一个中央电磁阀(CS)模块进行了工厂测试,其中包括代表操作范围的交流损耗测试。AC损失的建模对于准备ITER TOKAMAK操作和调试至关重要。以下删除ITER CS线圈的交流损耗模型。此类模型必须易于实现,并快速执行,以允许模拟较长的ITER等离子体方案。本文解释了所应用的简化,并讨论了含义。对模型对实验数据进行了验证。对模型对实验数据进行了验证。
最近的研究表明,使用非经典光状态(例如纠缠光子对)可能会为实验性双光子吸收光谱开辟新的令人兴奋的途径。尽管对纠缠双光子吸收 (eTPA) 进行了几项实验研究,但关于 eTPA 是否真正被观察到仍然存在激烈的争论。这场有趣的争论之所以出现,主要是因为最近有人认为单光子损耗机制(例如散射或热带吸收)可能模仿预期的纠缠光子线性吸收行为。在这项工作中,我们专注于 eTPA 的透射测量,并在评估 eTPA 的背景下探索了三种不同的双光子量子干涉仪。我们证明所谓的 N00N 状态配置是唯一一种被认为对线性(单光子)损耗不敏感的配置。值得注意的是,我们的结果表明,N00N 状态可能成为量子光谱学的潜在强大工具,使其成为任意样本中 eTPA 认证的有力候选者。