云数据中心能力的持续指数增长在执行大量计算密集的工作量时,对碳排放的认识提高了。为了减少car-bon排放,云用户通常会暂时将其批处理工作负载转移到碳强度低的时期。尽管这种时间的变化可以增加工作完成时间,但由于其延迟执行,云购买量的成本节省(例如保留实例)也会减少用户以碳吸引力的方式运作时。发生这种情况是因为碳感知调整通过定期离开资源来改变需求模式,这在碳排放和成本之间创造了权衡。在本文中,我们提出了盖亚(Gaia),这是一种碳感知的调度程序,使用户能够解决基于云的批处理调度程序中的碳,性能和成本之间的三向权衡。我们的结果量化了云平台中碳绩效成本的权衡,并表明,与现有的碳感知调度策略相比,我们提出的政策可以使每百分比增加成本的碳储蓄量增加一倍,同时将绩效降低间隔额的碳储蓄量增加了26%。
该模型具有一个简单的用户界面,该界面允许从八个栖息地的列表中进行选择,以供放牧和输入这些栖息地的区域。然后,用户可以选择该物种(绵羊,牛,小马,野牛或水牛),在某些情况下,动物的大小作为品种的代理(广泛分类为大,中等或小品种),以及在特定栖息地(S)中放牧的个体(成人或少年)的人数(成人或少年)。该模型的输出表示甲烷和氧化二氮的总年度排放,对于整个部位或牲畜的每公顷。此外,该模型还提供指示性的库存率来指导用户输入数据时,指示输入的库存密度是否被认为是高,中或低的,以允许与其他栖息地进行比较。
8 trucks – will have multiple of providers (Cummins, Ballard, Plug Power, Bosch, Nikola, GM, Toyota, Volvo, etc) • The zero emission EPA approved RNG engines are already in production by Cummins for Class 8 trucks • Ann other components are the same as on diesel locomotives • In 2015, the US locomotive producers made over 3,500 line haul机车;总切换器和线路运输
•类别1:必须检测到购买的商品的至少80%。原材料(例如,建筑木材)必须进行100%注册,而工作产品(例如,完成的组件)可以使用基于支出的方法检测到•类别2:也可以使用基于支出的方法来计算此类别,例如。通过注册运输服务的费用。•类别5:必须考虑以下材料:残余废物(例如)包装材料),塑料(例如膜),废纸,二手玻璃,电子设备(例如应用程序Rocchia),绿色废物(例如有机)和其他可回收物质和废水。•类别10:在这种情况下,需要声明,以证明从事中间产品转型的合作伙伴公司的温室气体排放预算(例如,预制房屋的制造商)。
水泥行业是由于其原材料处理和能源需求而产生二氧化碳(CO 2)排放的部门之一。CO 2作为温室气体(GHG)排放,有助于全球变暖,从而导致环境,健康和经济损失。为了解决这些问题,印度尼西亚致力于到2050年减少工业部门的温室气体排放。为了有效计划减少公司产生的温室气体排放,本研究旨在量化一家水泥公司的排放,代表印度尼西亚水泥行业,以了解公司碳足迹的当前状态并确定可行的缓解措施。水泥行业利用温室气体定量系统来计算原材料处理,热能消耗和电力购买的排放。在2021年至2050年的Vensim PLE软件(在业务上(BAU)条件下,使用Vensim PLE软件的计算结果用于系统动力学建模,并具有各种减排策略。结果表明,在BAU条件下具有减少排放策略的温室气排放到2050更密集地采用脱碳技术,过程优化研究以及政府政策(例如碳税和碳交易)需要实现碳中性目标。作为一个群岛地区,印度尼西亚预计会受到气候变化的影响关键字:水泥,减轻排放,温室气体排放,排放定量,系统动力学简介1全球变暖是由温室气体(GHG)引起的,例如二氧化碳(CO 2)以及其他对气候影响的气体,估计在2030年-2052 -2052 -2052(Fankhauser and 2030 -2052)估计增加了1.5°C。
定义碳足迹是指温室气体排放的总量,主要是二氧化碳(CO2)和其他碳化合物,通常由个人,事件,组织或产品(通常用CO 2 e)做出的特定动作引起的,直接或间接地发射到大气中。温室气体(GHG)具有吸收红外辐射的能力,从而在大气中捕获热量的各种蒸发状态中的任何一种,并导致温室效应,从而导致地球表面的温度升高,并随后进行全球变暖。温室效应是指在地球表面上反射回到大气中反射回的射线的过程,导致温度升高,这种现象被称为全球变暖的现象,是指在地球表面附近观察到的平均空气温度逐渐增加,从而导致了自我转变,并导致人类活动的变化,并导致人类的前景变化,并引起人们的变化。全球各个地区经历的天气模式。
摘要我们使用半机械的、基于经验的统计模型来预测全球陆地土壤二氧化碳排放的空间和时间模式。排放包括土壤生物和植物根部的呼吸作用。在全球范围内,土壤二氧化碳流出速率与温度和降水量有显著相关性;它们与土壤碳库、土壤氮库或土壤碳氮的相关性不强。湿地覆盖了大约 3% 的陆地面积,但仅使预测的二氧化碳排放量减少约 1%。估计每年从土壤到大气的二氧化碳通量为 76.5 Pg C yr−1,比之前的全球估计值高 1-9 Pg,比陆地净初级生产力高 30-60%。与未受干扰的植被覆盖相比,历史土地覆盖变化估计已使当前土壤 CO2 年度排放量减少了 0.2–2.0 Pg C yr−1。土壤 CO2 通量在大多数地区具有明显的季节性模式,最大排放量与植物活跃生长期相吻合。我们的模型表明,土壤全年都会产生 CO2,从而导致冬季大气 CO2 浓度升高。我们以 0.5° 纬度经度空间和月时间分辨率推导出基于统计的土壤 CO2 排放量估计值,这是迄今为止对土壤全球 CO2 通量的最佳估计,应该有助于研究大气和陆地生物圈之间的净碳交换。
本测试方法涉及使用装有仪器的地面车辆获取位于行驶路线附近的空气污染源信息的一般做法。通过 OTM 33 的特定子方法,可以执行源排放评估,范围从小型逃逸排放的近场检查到整个设施的质量排放率测量。空气污染的地理空间测量 (GMAP) 是一个通用术语,指的是使用移动格式的快速响应仪器和精确的全球定位系统 (GPS) 在各种使用场景中时空解析空气污染模式。一般的“移动测量”或 GMAP 应用可以利用许多不同的仪器和移动方案来调查一系列空间尺度上的众多空气质量问题。该方法由 EPA 研发办公室 - 国家风险管理研究实验室提交给 EPA 空气质量、规划和标准办公室 - 空气质量评估部 - 测量技术组 (MTG),以纳入 EPA 排放监测中心 (EMC) 网站的其他测试方法 (OTM) 类别:http://www.epa.gov/ttn/emc/tmethods.html#CatC/ 。在 EMC 的 OTM 部分发布测试方法既不代表 EPA 认可该测试方法的有效性,也不代表监管机构批准该测试方法。EMC 的 OTM 部分的目的是促进对开发排放测量方法的讨论,并为监管机构、受监管社区和广大公众提供可能有用的工具。其他测试方法是尚未受到联邦规则制定过程约束的测试方法。EMC 工作人员审查了这些方法以及支持这些方法的可用技术文档,发现它们可能对排放测量界有用。审查的技术信息类型包括现场和实验室验证研究;协作测试结果;同行评审期刊的文章;同行评审意见;以及方法本身的质量保证 (QA) 和质量控制 (QC) 程序。可在以下链接中找到总结每种方法可用技术信息的表格。EPA 强烈建议提交额外的支持现场和实验室数据以及有关这些方法的评论。这些方法也可被视为满足 40 CFR 第 60、61 和 63 条联邦要求的替代方法的候选者。这些方法可考虑用于联邦强制执行的州和地方计划(例如,Title V 许可证、州实施计划 (SIP)),前提是它们受 EPA 区域 SIP 批准流程或许可否决权和公众通知的约束,并有机会发表评论。但是,在来源可以将它们用于此目的之前,它们必须根据 60.8、61.13 或 63.7(f) 获得批准作为替代方案。考虑方法是否适用于特定目的应基于所述适用性以及表中概述的支持技术信息。这些方法可用于其他非 EPA 计划用途,包括州许可计划以及科学和工程应用,而无需 EPA 监督。
近期向可持续能源系统的转变见证了无碳和碳高效发电在电网中的快速部署。然而,碳减排的好处并非在整个电网中均匀体现。每台发电机可以有不同的碳排放率。由于物理潮流的存在,节点功耗由一组发电机的组合来满足,而这种组合由网络拓扑、发电机特性和电力需求决定。本文介绍了一种基于物理潮流模型的技术,该技术可以根据发电和潮流信息有效地计算每个单个发电机贡献的节点碳排放量。我们还扩展了该技术以计算节点平均碳排放量和边际碳排放率。模拟结果验证了计算的有效性,同时我们的技术为碳审计、碳导向需求管理和未来碳导向容量扩张等应用提供了基本工具。