传染病疫情给决策者带来了一项艰巨的任务,需要在严格的时间限制和不确定性下实施控制策略。数学模型可用于预测控制干预的结果,在发生此类疫情时为决策者提供有用的信息。然而,这些模型在疫情爆发的早期阶段,由于缺乏有关疾病动态和传播以及控制效果的准确相关信息而受到影响。因此,这些模型提供的建议通常是在获得更可靠的信息后临时采纳的。在这项研究中,我们表明,这种反复试验的管理方法没有正式考虑不确定性的解决以及控制行动如何影响不确定性,可能会导致次优的管理结果。我们比较了三种管理理论流行病的方法:非自适应管理 (AM) 方法,不使用实时疫情信息来调整控制;被动 AM 方法,在实时信息可用时将其纳入;主动 AM 方法,通过收集实时信息明确将未来的不确定性解决方案纳入其初始建议中。主动 AM 的结构化框架鼓励指定可量化的目标、系统行为模型和可能的控制和监控行动,然后是迭代学习和控制阶段,该阶段能够采用复杂的控制优化并解决系统不确定性。结果是一个管理框架,它能够提供动态的长期预测,以帮助决策者实现管理目标。我们详细研究了整合最新疫情信息的不同方法的效果。我们发现,即使在高度简化的系统中,整合新数据的方法也会导致不同的结果,从而影响初步的政策决策,而积极的 AM 管理方法可以提供更好的信息,从而导致流行病产生更理想的结果。2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
许多数字市场的竞争性质可能会改变第一类错误和第二类错误之间通常的权衡条件。网络效应往往使数字市场的结构非常集中,进入壁垒也相当高。大数据可能导致这种结果,因为现有企业享有的数据禀赋提供了竞争优势,使挑战它们变得更加困难。约束现有企业的主要机制是市场竞争,即潜在和实际进入削弱了现有企业施加市场力量的能力。这使得潜在竞争对手比在传统市场中更有价值。因此,第二类错误的代价可能特别高昂。换句话说,数字市场的某些特点可能证明对该行业合并的评估方式进行一些改变是合理的。