范围:为戴斯空军基地的第 7 远程监视站建造一个新的后勤和战备燃料中队 (LGRF) 行政和实验室设施,包括行政空间、指挥空间、实验室空间、物理控制能力和靠近加油卡车场。该建筑包括一个单层设施,带有钢筋混凝土钻孔墩基础、承重砌体墙、外部绝缘饰面系统、轻型钢屋顶框架上的直立锁边金属屋顶和内部装饰。该设施还包括实验室设备,包括接地导轨、水槽、橱柜、水过滤、通风外壳和专用供暖、空调和排水系统;基地宽燃料系统控制接口;电气;安全通信;根据 AFI 32-1062 连接备用发电机;大众通知系统;以及灭火和报警系统。该项目建造了一个小型金属建筑,两端都有高架分段门,用作设备储存。这座建筑将被封闭,但不需要照明、管道、冷却或绝缘。 * 信息提交更改。
• AESA 雷达 • 电信 • 仪器仪表 描述 CGY2170YHV/C1 是一款在 X 波段工作的高性能 GaAs MMIC T/R 6 位核心芯片。该产品有三个 RF 端口,包括三个开关、一个 6 位移相器、一个 6 位衰减器和放大器。它的移相范围为 360°,增益设置范围为 31.5 dB。移相器和第一放大器级之间还有一个电压可变衰减器,用于增益控制。它覆盖的频率范围为 8 至 12 GHz,并在 10 GHz 时提供 5.8 dB 的增益。带有串行输入寄存器的片上控制逻辑最大限度地减少了控制线的数量,并大大简化了该设备的控制接口。该芯片采用 0.18 µm 栅极长度 ED02AH pHEMT 技术制造。 MMIC 采用金焊盘和背面金属化,并采用氮化硅钝化进行全面保护,以获得最高水平的可靠性。该技术已针对太空应用进行了评估,并被列入欧洲航天局的欧洲首选部件清单。
INID XS 读卡器系列 INID XS RF DistriFlex® 读卡器系列提供灵活的门禁读卡器,用于读取高频 13.56 MHz 和低频 125 kHz Prox 凭证。INID XS RF DistriFlex® 读卡器有两种型号:仅高频 SmartReader XS 以及组合低频和高频 MultiSmart XS。INID XS 读卡器带或不带 PIN 键盘,具有用于 Wiegand、时钟和数据、TTL 和 RS485 的软件控制接口。现场可编程功能可为您的投资提供面向未来的保障。INID XS 读卡器支持的技术:ISO14443-3A:MIFARE® Classic、MIFARE Ultralight®。ISO14443-4A:MIFARE® DESFire® EV1、EV2 和 V0.6、SmartMX。ISO14443-4B:Infineon、Atmel 和 ST microelectronics。NFC:点对点以及对被动凭证和设备的支持。 LF-Prox:EM4102 和为 HID®、AWID®、QuadraKey 和 GE/CASI® ProxLite® LF 近距离读卡器编程的凭证。输出协议 INID XS 读卡器可配置为 OSDP,包括安全通道或传统访问控制:Wiegand、时钟和数据、TTL。
BCI 系统包括大脑或中枢神经系统 (CNS)、脑信号采集、神经反馈、信号处理和解码、控制接口和外围设备(图 1 上部)。用户的 CNS 是 BCI 系统中最复杂、最活跃、适应性最强的子系统,不可或缺。因此,BCI 系统的设计和评估需要优先考虑用户和人体工程学。脑信号采集是 BCI 系统的另一个关键组成部分,通常是实际瓶颈之一;获取高质量的脑信号至关重要。如今,可以使用多种技术记录大脑活动,例如神经元尖峰检测(NSD,细胞外或细胞内)、皮层电图 (ECoG)、脑电图 (EEG)、脑磁图 (MEG)、正电子发射断层扫描 (PET)、功能性磁共振成像 (fMRI) 和功能性近红外光谱 (fNIRS)。 2 其中,MEG、PET、fMRI技术要求高,价格昂贵,不便携,限制了其在BCI中的广泛应用;另一方面,PET、fMRI、fNIRS依赖于脑代谢的检测,空间分辨率高,时间分辨率低,在目前的技术水平下不太适合快速的脑机交互;EEG可以无创地记录头皮信号,安全可靠,但其空间分辨率和信噪比并不比侵入式ECoG和NSD好,后者也有更广泛的应用。
这种最先进的分析将允许确定基站单元在感知和重新配置操作方面的预期发展和性能。对无线电单元技术需求的研究还将涉及基带和前传功能的分析,特别是支持监测多部门辐射的控制接口结构。通常用于这些功能的算法和模拟到数字/数字到模拟接口/处理器必须与无线电单元内的其他子集集成。需要确定与此类接口相关的功能和约束,以评估与 5G/6G 支持标准兼容的 Open RAN 的限制和操作配置。任务 2:可重构网络天线的新范式 - 概念和高级设计我们将研究新方法,并通过概念验证提供新的无线电感知和多种波束成形功能。我们将致力于设计和优化多波束天线,以实现空间分集和多波段功能。可以研究两种研究策略: - 一方面,我们将集中精力设计能够实现子波束控制的阵列天线系统,以实现多波束空间分集。- 其次,可以考虑在波束成形方面分别管理频率子带,以提供各种覆盖场景。一个问题可能是由于共集成结构而缓解 FR1(Sub-6Ghz)和 FR2(毫米波)频段。
图。1。钢琴弹奏任务设置。(a)SR3T的顶视图渲染,显示水平运动DOF和相关电动机。(b)SR3T的侧视图渲染,显示垂直运动DOF和相关电动机。(c)第一度自由度(DOF)的SR3T控制界面的顶视图渲染;参与者使用其右脚通过脚在脚上的惯性测量单元(IMU)捕获SR3T的运动。(d)第二DOF的SR3T控制接口的侧视图渲染。(e)在球体上投射的人拇指终点的工作表面与(f)(f)在球体上投射的SR3T端点的工作表面进行比较 - 增强人类的工作表面范围(请参阅方法)。(g,h)无约束的飞行员实验的顶部和侧视图:一位经验丰富的钢琴演奏者在佩戴和使用SR3T时自由锻炼钢琴,在使用后的1小时内有效地弹奏11个指钢琴。(i)系统实验:使用右手的5个手指加上左手食指(LHIF)和(J)使用SR3T弹奏序列。(k)参与者使用SR3T扮演在其前面显示器上显示的音符顺序。
摘要 大多数残疾人在日常生活中通常依赖他人,尤其是在从一个地方移动到另一个地方时。对于轮椅使用者来说,他们不断需要有人帮助他们移动轮椅。通过使用轮椅控制系统,他们变得更加独立。本研究项目的目的是为身体残疾人士设计和制造语音控制轮椅。轮椅控制系统部署语音识别系统来触发和控制其所有动作。它集成了微控制器、通过谷歌助手的语音识别、电机控制接口板来移动轮椅。通过使用该系统,用户只需通过谷歌助手说话和命令即可操作轮椅。基本功能过程包括前进和后退、左转和右转以及停止。它使用由 Microchip Technology 制造的 PIC 控制器来控制系统操作。它通过谷歌助手与语音识别进行通信,并使用从 Ada-fruit 云中保存为数字系统的命令。给出语音,然后确定相应的输出命令来驱动左右电机。为了完成这项任务,编写了一个汇编语言程序并将其存储在控制器的内存中。关键词:语音控制轮椅,肢体残疾人士 1. 引言
本技术手册是在安全和任务保障办公室持续培训计划下开发的。本手册中包含的结构化信息将使读者能够高效、有效地识别和控制所需的技术细节,以确保飞行系统元件在组装操作(地面和太空)期间正确配合。研究了整个联邦政府用于定义和控制硬件和软件技术接口的技术。实际需要有效定义和控制系统接口基本尺寸和公差的技术信息比例很少超过任何接口控制文档的 50%。此外,当前政府的接口控制流程非常耗费纸张。简化此流程可以改善沟通,节省大量成本,并提高整体任务安全性和保障性。本手册的主要目的是确保设备之间接口的格式、信息和控制清晰易懂,仅包含保证接口兼容性所需的信息。重点在于控制接口的工程设计,而不是系统的功能性能要求或接口设备的内部工作。接口控制应在接口元素处进行,除非有例外。本手册有两个重要部分。第一部分“接口控制原则”讨论了如何定义接口。它描述了要考虑的接口类型,并推荐了充分接口控制所需的文档格式。第二部分“流程:通过设计阶段”为接口定义和控制提供了量身定制的指导。
CW6308 是一款高精度线性充电器 IC,具有电源路径管理功能,适用于使用单节锂离子/锂聚合物电池的可穿戴设备和物联网设备。该设备嵌入充电管理模块并完成完整充电阶段,包括预充电、快速充电恒流 (CC)、快速充电恒压 (CV) 和充电终止。该设备集成了电源路径管理 (PPM),即使电池电量耗尽,设备也可以在为电池充电的同时为系统运行提供电源。它还支持完整系统重置和运输模式。CW6308 通过限制从输入到系统的电流和从电池到系统的电流来提供系统过流保护 (OCP)。当电池电压低于电池欠压锁定 (UVLO) 阈值时,电池到系统的放电路径将被切断。CW6308 可以通过 NTC 引脚(支持 10K 或 100K NTC 热敏电阻)监控电池组温度,并在电池处于热或冷状态时暂停充电。该设备还集成了充电安全定时器和预充电定时器。当其中任何一个定时器到期时,正在进行的充电将被关闭。I 2 C 控制接口允许主机配置充电器参数并获取 IC 状态。充电和放电期间可使用 I 2 C 看门狗。该设备采用微型无铅 0.4mm 间距、1.25mm x 1.25mm、9 球 WLCSP 封装。
神经控制接口是一项独特的全球技术,它彻底改变了控制和信号处理领域。这项技术有助于将人类和计算机联系起来,实现某些患者或人们难以实现的目标。在提议的实验中,脑信号被用来移动自动臂并执行各种任务,例如移动手的任何手指。为了实时为 3D 手臂机器人提供运动,我们获取了基于 10-20 国际系统的 EEG 数据,并使用 OpenBCI Wi-FI、OpenBCI 板将这些信号转发到处理计算机,并使用 OpenBCI GUI 和 Arduino Uno 控制伺服电机。此外,本文还介绍了一种脑电图 (EEG) - 一种帮助残疾人和老年人的智能轮椅控制系统。本文旨在使用脑机接口 (BCI) 耳机控制电动轮椅。这种轮椅可能对因脑脊髓切断而无法使用手或腿的残疾人有益。基本目标是将不同的面部表情与轮椅运动相匹配。该系统由 NeuroSky Mind Wave EEG 传感器线圈组成,该线圈与 Android 配对,并连接到语音中断电路,以防止轮椅意外发生故障或自动移动。脑机接口设计的系统通过实时实验研究进行评估,并应用于男性和女性,通过张开和握紧手进行诱导,验证过程也使用不同的频率和电压进行,实验结果表明该过程将按设计运行,具有极高的精度和高性能。