估计此次信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将有关此负担估计或本次信息收集任何其他方面的评论(包括减轻负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。
控制理论技术已成功用于自适应系统设计,为适应机制的有效性和稳健性提供正式保证。然而,在动态适应方面,获得保证所需的计算工作量构成了严重的限制。为了解决这些限制,本文提出了一种结合软件工程、控制理论和人工智能的混合方法来设计软件自适应。我们的解决方案提出了一个具有性能调整功能的分层动态系统管理器。由于高级需求规范与管理系统的内部旋钮行为之间存在差距,分层组合的组件架构寻求将关注点分离为动态解决方案。因此,设计了一个两层自适应管理器,通过回归分析和进化元启发式算法优化参数,以满足软件需求。优化依赖于离线和在线阶段相对于控制理论指标的性能、有效性和稳健性指标的收集和处理。我们用医疗保健领域的身体传感器网络 (BSN) 原型来评估我们的工作,该原型被社区广泛用作演示。BSN 是在机器人操作系统 (ROS) 架构下实现的,对系统可靠性的关注被视为适应目标。我们的结果强调了在这样一个安全关键领域表现良好的必要性,并为如何将控制和基于 AI 的技术相结合来设计自适应系统的混合方法能够提供有效的适应性提供了大量证据。
摘要 基于经济激励的部署政策是加速清洁能源技术传播的最有效工具之一。上网电价等政策工具在推动太阳能光伏发电的增长方面发挥了关键作用,并可以加速其他对能源系统脱碳至关重要的技术的采用。然而,历史经验表明,如果不能根据技术价格下降调整经济激励措施,可能会从根本上破坏这些政策的有效性和成本效益。本文通过评估三种新颖的政策设计来应对这一挑战。基于控制理论原理,所提出的机制根据部署、政策成本或采用者的盈利能力的变化来调整激励措施。我们评估了每种政策设计在 2000 年至 2016 年期间应用于德国太阳能光伏上网电价时将取得的结果。为此,我们开发了一个基于代理的模型,使我们能够模拟个人家庭和中型和大型企业的采用决策,以及技术价格的演变。我们的结果表明,受控制理论启发的响应设计可能会产生更紧密地遵循其目标且成本更低的政策。此外,我们的分析表明,所研究的设计可以大大减少政策结果和意外利润的不确定性。这项研究还强调了政策目标的时间分布,并确定政策设计的权衡,为未来部署政策的设计得出相关启示。
2 文献综述.................... ... 6 2.1.1 二冲程发动机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................11 2.2 控制理论..........................................................................................................................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................11 2.2.2 控制理论.......................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................................11 .. ... . ... ...
由于机器人技术、人工智能和控制理论领域的许多令人兴奋的发展,三个曾经截然不同的课题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何在不撞到任何东西的情况下将钢琴从一个房间搬到另一个房间的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂问题。在人工智能中,规划最初意味着寻找一系列逻辑运算符或动作,将初始世界状态转化为期望的目标状态。目前,规划的范围超出了这一点,包括许多决策理论思想,如马尔可夫决策过程、不完全状态信息和博弈论均衡。虽然控制理论传统上关注稳定性、反馈和最优性等问题,但人们对设计用于为非线性系统找到可行开环轨迹的算法的兴趣日益浓厚。在本论文的某些部分中,已经应用了“运动规划”这一术语,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大,具有一个有趣的共同点。在本文中,我将以涵盖这一共同点的广义使用“规划”一词。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域中的所有重要内容。本演讲重点介绍与规划相关的算法问题。在机器人技术中,重点是设计通过处理复杂几何模型来生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和最优性。分析技术占控制理论文献的大部分,但不是本演讲的重点。 “规划和控制”这个短语通常用于识别开发系统中的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略这些术语的历史含义,“规划”和“控制”可以用于
由于机器人技术、人工智能和控制理论领域的许多激动人心的发展,三个曾经截然不同的课题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何在不撞到任何东西的情况下将钢琴从一个房间搬到另一个房间的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂问题。在人工智能中,规划最初意味着寻找一系列逻辑运算符或动作,将初始世界状态转化为期望的目标状态。目前,规划的范围超出了这一点,包括许多决策理论思想,如马尔可夫决策过程、不完全状态信息和博弈论均衡。虽然控制理论传统上关注稳定性、反馈和最优性等问题,但人们对设计用于为非线性系统找到可行开环轨迹的算法的兴趣日益浓厚。在本论文的某些部分中,已经应用了“运动规划”这一术语,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大,具有一个有趣的共同点。在本文中,我将以涵盖这一共同点的广义使用“规划”一词。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域中的所有重要内容。本演讲重点介绍与规划相关的算法问题。在机器人技术中,重点是通过处理复杂的几何模型来设计生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和最优性。分析技术占控制理论文献的大部分,但不是本演讲的重点。 “规划和控制”这个短语通常用于识别开发系统中的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略这些术语的历史含义,“规划”和“控制”可以用于
由于机器人技术、人工智能和控制理论领域的许多令人兴奋的发展,三个曾经截然不同的主题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何将钢琴从一个房间搬到另一个房间而不撞到任何东西之类的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂因素。在人工智能中,规划最初意味着搜索一系列逻辑运算符或动作,将初始世界状态转换为期望的目标状态。目前,规划的范围已超出此范围,包括许多决策理论思想,如马尔可夫决策过程、不完美状态信息和博弈论均衡。虽然控制理论传统上关注的是稳定性、反馈和最优性等问题,但人们对设计寻找非线性系统可行开环轨迹的算法的兴趣日益浓厚。在某些工作中,“运动规划”一词已被应用,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大到共享一个有趣的共同点。在本文中,我以广义使用术语规划,涵盖了这一共同点。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域的所有重要内容。本演示重点介绍与规划相关的算法问题。在机器人技术中,重点是通过处理复杂的几何模型来设计生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和优化。占控制理论文献大部分的分析技术不是这里的主要焦点。“规划和控制”这个短语通常用于识别开发系统时的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略术语带来的历史内涵,“规划”和“控制”可以使用
由于机器人技术、人工智能和控制理论领域的许多激动人心的发展,三个曾经截然不同的课题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何在不撞到任何东西的情况下将钢琴从一个房间搬到另一个房间的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂问题。在人工智能中,规划最初意味着寻找一系列逻辑运算符或动作,将初始世界状态转化为期望的目标状态。目前,规划的范围超出了这一点,包括许多决策理论思想,如马尔可夫决策过程、不完全状态信息和博弈论均衡。虽然控制理论传统上关注稳定性、反馈和最优性等问题,但人们对设计用于为非线性系统找到可行开环轨迹的算法的兴趣日益浓厚。在本论文的某些部分中,已经应用了“运动规划”这一术语,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大,具有一个有趣的共同点。在本文中,我将以涵盖这一共同点的广义使用“规划”一词。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域中的所有重要内容。本演讲重点介绍与规划相关的算法问题。在机器人技术中,重点是通过处理复杂的几何模型来设计生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和最优性。分析技术占控制理论文献的大部分,但不是本演讲的重点。 “规划和控制”这个短语通常用于识别开发系统中的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略这些术语的历史含义,“规划”和“控制”可以用于
• 赞助单位:AFRL/飞行器 • 背景:AFIT 优化论文 & 背景:AFIT 多无人机优化与控制理论论文,AFRL