摘要:电动汽车充电管理系统存在一些主要问题。这些问题与主要控制有关,例如负载电流分配、电源平衡、电压控制、电能质量和服务可靠性。当前研究的目标是开发一种电动汽车充电系统的控制算法。所提出的控制算法包括集中控制器和本地控制器,可确保两层控制。通过控制本地电源(光伏系统)和储能系统,该算法旨在减轻由于太阳辐照度、云层覆盖或所连接电动汽车的能源消耗变化而可能出现的电网功率波动。能源管理系统应尽可能优先使用光伏系统产生的太阳能为电动汽车充电。通过最大限度地利用太阳能,充电站可以减少对电网电力的依赖并减少碳排放。索引术语 - 电动汽车、能源管理
本文致力于解决如何提高城市电网可靠性这一实际问题。通过对 2017-2018 年杜尚别城市配电网电气设备故障情况以及导致这些紧急停电的损坏原因进行统计分析,确定了影响导致紧急停电的损坏分布的因素。考虑到已确定的因素,提出了一种考虑杜尚别市当地情况的电力消耗预测系统。它使我们能够根据电力消耗标准的建议提出一种控制电网运行参数的方法,从而提高杜尚别市电网的可靠性。提出了基于现代智能电力计量功能使用控制算法来实施所提出的提高城市电网供电可靠性的方法。为了实现控制算法,提出了从智能电能计量到数据采集中心接收和传输信息的原理图设计。
摘要 飞行控制系统必须满足极高的功能完整性和可用性水平。控制算法由机载计算机 (OBC) 处理。为了满足机载计算机的可靠性要求,必须采用各种类型的冗余。在本文中,我们关注了用于航空航天应用的机载计算机的三重模块冗余 (TMR)。在所提出的架构中,使用指定的传感器测量控制输入和系统状态。根据获取的数据,处理单元处理任务场景和控制算法。此后,执行器将结果应用于系统。根据系统要求,使用组件级的 TMR 技术来提高 OBC 的可靠性。OBC 的所有组成模块,包括处理单元、总线接口、传感器、执行器和 IO 设备,都受益于三重冗余。案例研究表明,类似的架构用于高可靠性的客机飞行计算机,只是我们的架构基于可用的多核微控制器。对设计的机载计算机的可靠性进行了分析评估,表明所提出的 OBC 可以满足可靠性要求。关键词:机载计算机、三模冗余、可靠性
风电场的设计和控制需要考虑在研究独立机器时通常会忽略的物理现象。事实上,大气流动与风电场之间以及风力发电厂本身内部都存在复杂的相互作用。此外,还应考虑上风风力涡轮机尾流对下游机器的功率和负载产生的影响,因为尾流是风电场中涡轮机之间耦合的主要形式,其影响通常对所收获的功率和结构载荷都有害。因此,需要研究在风力涡轮机和风电场层面的适当控制措施。CL-Windcon 项目将通过将整个风电场视为一个综合的实时优化问题来解决高级建模、开环和闭环控制算法。一些开发的控制算法的有效性将通过风洞测试进行验证。事实上,通过使用复杂的主动控制缩放风力涡轮机模型,人们可以在风洞中以较低的成本和风险进行具有监督和可重复边界条件的实验。
由于运载火箭的性能与其飞行控制系统密切相关,因此航天飞行中的一个重大挑战是设计姿态控制算法,以确保运载火箭的稳定性,同时遵循确定的轨迹并抑制外界干扰。本报告旨在描述设计这种控制算法并最终评估其性能的通用方法。首先,回顾了现有的姿态控制方法并介绍了线性控制理论。然后介绍影响运载火箭的重要现象,包括刚体动力学、空气动力学、发动机惯性、下垂模式和弯曲模式。然后,使用给定的案例研究作为示例来估计描述所有这些现象的参数。然后推导线性运动方程,并提出构建车辆及其执行器的状态表示的方法。基于该线性模型,本文描述了一种逐步方法来计算用于处理所有相关现象的稳定 PID 控制器。最后,进行包括稳定性、时间响应、灵敏度和鲁棒性在内的性能分析,以评估控制器行为。
方法和远程接近性操作:表征,方法,高级权力,动作获取:用于捕获,控制,对接,对接和关联的控制算法服务的机器人技术:提供寿命最终服务,任务扩展,轨道重置/DE-ORBIT/DE-ORBIT
如何节省无人机的能耗进而实现长距离运输是一项非常现实且艰巨的任务。然而对于无人机来说,经典的物体检测算法,例如基于深度卷积神经网络的物体检测算法和经典的飞行控制算法,例如基于PID的位置控制算法,都需要大量的能耗,限制了无人机系统的应用场景。针对这一问题,本文针对四旋翼缆绳悬挂有效载荷(QCSP)系统提出了一种轻量级的物体检测网络和线性自抗扰控制器(LADRC)来提高能耗效率。该系统采用YOLOV3网络并将其嵌入到Jesson NX移动平台中,可以精确检测目标位置。此外,采用缆绳悬挂结构的非线性速度控制器来控制有效载荷的速度,采用LADRC算法实现对有效载荷位置的快速准确控制。仿真与实飞实验表明,提出的目标检测算法和LADRC控制策略可以有效节省无人机的能源。
摘要 由于其多种优势(尤其是体积小、重量轻),电力电子变压器在铁路应用中引起了显著的关注。本文主要致力于开发一种基于完全可编程门阵列 (FPGA) 的电力电子变压器控制平台,用于上述应用中。由于 FPGA 的并行处理可以加快控制算法的执行速度,因此可以保证可靠的运行(这在牵引应用中至关重要)。为此,构建了一种输入串联输出并联电力电子变压器结构,并在 Xilinx FPGA 控制平台上设计和实现了电力电子变压器在牵引应用中可靠稳定运行的各种考虑因素,例如安全启动和双向功率流,以及所需的控制和脉冲生成方案。此外,还提出了一种改进的控制算法,以便以简单、更可靠的方式控制电力电子变压器。该控制方案基于DC-DC-LLC谐振变换器的输出电压而开发,能够有效地控制整流器直流母线电压之和并跟踪输入正弦参考电流,并且所需的传感器数量较少。最后,通过实验测试从各个方面检验了该方案的有效性。
摘要 - 使用连接和自动化车辆的新兴出行系统的需求不断增长,这迫使有必要进行质量测试环境以支持其开发。在本文中,我们引入了一个基于统一的虚拟模拟环境,用于新兴的移动性系统,称为信息和决策科学实验室的规模规模的智能数字城市(IDS 3 d City),旨在与其身体同行及其既定控制框架一起运行。通过使用机器人操作系统,AIRSIM和Unity,我们构建了一个模拟环境,能够迭代设计实验的速度比物理测试床中的可能性要快得多。此环境提供了一个中间步骤,以在实施物理测试台之前验证我们的控制算法的有效性。IDS 3 D City还使我们能够证明我们的控制算法独立于基础车辆动力学,因为Airsim引入的车辆动力学与我们规模的智能城市的规模不同。最后,我们通过在虚拟和物理环境中进行实验并比较它们的输出来证明数字环境的行为。
悬停四旋翼飞行器在各种湍流风况下的定位保持最近备受关注,因为它有可能在复杂环境中应用。已经开发出各种类型的控制算法来提高四旋翼飞行器在这种风况下的性能。这些需要通过飞行四旋翼飞行器本身进行测试和验证。一种快速且低成本的解决方案是通过改造现有风洞来建立测试台,以重现这种风况。为了进行此类实验,马来西亚博特拉大学 (UPM) 将开放式喷射风洞连接到现有的开环风洞,该风洞最初的测试面积为 1 米乘 1 米。通过连接具有发散形状的开放式喷射风洞,测试段面积的直径增加到 2 米,确保有足够的空间来操纵和悬停实验四旋翼飞行器。在测试段前连接一个沉降室来表征输出风。开口处的最大风速为 8 米/秒。利用风速计对延伸风洞的流动特性进行了分析,获得了距开口四个不同距离处的速度分布,发现风速分布和湍流强度模拟了室外风湍流条件,可用于测试四旋翼悬停控制算法。