通过 Bosch 工艺在硅中蚀刻高深宽比结构对于微机电系统 (MEMS) 和硅通孔 (TSV) 制造等现代技术至关重要。由于蚀刻时间长,该工艺对掩模选择性的要求非常高,并且事实证明 Al 2 O 3 硬掩模在这方面非常合适,因为与传统的 SiO 2 或抗蚀剂掩模相比,它提供了高得多的选择性。在这项工作中,我们结合使用扫描电子显微镜 (SEM)、光谱椭圆偏振仪 (SE) 和 X 射线光电子能谱 (XPS) 深度剖析来仔细研究 Al 2 O 3 掩模蚀刻机理,从而探究超高选择性的来源。我们证明,通过增加钝化步骤时间,在 Al 2 O 3 上会形成更厚的氟碳聚合物层,然后以微小的平均蚀刻速率 ~0.01 nm/min 去除 Al 2 O 3。 XPS 深度剖析显示,在采用 Bosch 工艺进行深反应离子蚀刻 (DRIE) 的过程中,聚合物和 Al 2 O 3 之间会形成一层 AlF x 层。由于 AlF x 不挥发,因此需要溅射才能去除。如果聚合物层足够厚,可以衰减进入的离子,使其能量不足以导致 AlF x 解吸(例如当使用较长的钝化时间时),则掩模不会被侵蚀。通过研究不同次数 DRIE 循环后的表面,我们还获得了有关 AlF x 的形成速率以及 DRIE 工艺过程中 Al 2 O 3 和聚合物厚度变化的信息。这些发现进一步扩展了对 DRIE 的认识,并可帮助工艺工程师相应地调整工艺。
测试结构的手动布局和特性自动化软件的生成需要大量的工程资源。因此,在高水平上定义结构布局、位置和所需计量,从而实现掩模布局和计量代码的自动生成,这一能力极具吸引力。最早的工艺控制出版物之一涉及从几何参数自动生成测试结构布局 [1],同时还关注测量数据的自动分析 [2]。该主题中的大多数出版物都发表于千禧年之前 [1-8],但测试结构布局的自动化继续引起人们的兴趣 [9-13]。近年来,由于相对低成本工具的出现,直接写入光学能力的使用率有所提高 [14]。这种系统在非生产环境中特别适用于快速原型制作,部分原因是无需考虑掩模成本,而且周期时间更短。与使用光掩模所必须的保守方法相比,消除这些限制为技术人员提供了更大的自由度和灵活性 [15]。可以快速实施短循环运行来研究/优化工艺步骤,而无需包括使用光掩模技术开发测试芯片时通常需要的一套全面的测试结构。这为改进技术的快速开发和原型设计开辟了真正的可能性,因为更改设计只需要修改数字文件。然而,要充分利用这一机会,电子设计自动化 (EDA) 软件还有待进一步改进,包括布局
随着极紫外 (EUV) 光刻技术进入大批量生产,半导体行业已将光刻波长匹配的光化图案化掩模检测 (APMI) 工具视为 EUV 掩模基础设施的主要空白。现在,已经开发出一种光化图案化掩模检测系统来填补这一空白。结合开发和商业化 13.5nm 波长光化空白检测 (ABI) 系统的经验以及数十年的深紫外 (DUV) 图案化掩模缺陷检测系统制造经验,我们推出了世界上第一个高灵敏度光化图案化掩模检测和审查系统 ACTIS A150(ACTinic 检测系统)。生产此 APMI 系统需要开发和实施新技术,包括高强度 EUV 源和高数值孔径 EUV 光学器件。APMI 系统具有高分辨率、低噪声成像,对缺陷具有极高的灵敏度。它已证明能够检测出印刷晶圆上估计光刻影响为 10% CD 偏差的掩模缺陷。