。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2023年2月16日。 https://doi.org/10.1101/2023.02.16.528733 doi:biorxiv preprint
图 1. 在具有稀释 Cs 吸附原子的 CsV 3 Sb 5 的 Sb 表面构建 Cr-Cs 双原子转子。 (a) 双原子转子形成示意图。 Cr/Fe 原子(用黄色球标记)作为单个原子分布并被 Cs 原子(用红色球标记)捕获,从而在 kagome 超导体 CsV 3 Sb 5 的 Sb 表面形成双原子转子。 (b) STM 图像显示具有稀释 Cs 原子的 CsV 3 Sb 5 晶体的 Sb 表面。 Cr-Cs 双原子转子用红色虚线圆圈突出显示(V s =-500 mV,I t =3 nA)。 (c) - (d) 尖端诱导 Cr-Cs 转子分离为 Cr 原子和 Cs 原子。分离前,Cr原子围绕Cs原子旋转,形成具有不稳定环带的Cr-Cs转子(c)。分离后,Cs和Cr原子的形貌清晰可见(d)。V s =-500 mV,I t =3 nA。(e),左:(c)中的旋转速率图ω(r),显示Cr原子沿圆形轨道绕Cs旋转(V =-600 mV,I =0.5 nA)。右:(c)中Cr-Cs转子环带位置(红十字标记)测得的I-t谱,显示出具有几个离散值的阶梯状特征(V =-250 mV,I =0.9 nA)。(f),CsV 3 Sb 5 的Sb表面Cr-Cs双原子转子的原子分辨STM形貌。图像中叠加了原子模型和 Sb 蜂窝晶格(白色虚线六边形),显示 Cr 原子围绕 Cs 吸附原子旋转(V s =-500 mV,I t =3 nA)。
3M-Nano是纳米级的每年一次的操纵,制造和测量国际会议;它将于2026年8月在中国苏州举行。该会议系列的最终野心是弥合纳米科学和工程科学之间的差距,旨在针对技术机会和新市场。纳米级的操纵,制造和测量的先进技术有望在许多应用领域中采用新颖的革命性产品和方法。与3M-NANO主题有关的研究领域工作的科学家被邀请提交论文。将在IEEE Xplore数据库和EI Compendex中提交所有接受的完整论文(在会议上和IEEE格式之后提交)。建议在IEEE Trans中发布选定的论文。自动化科学与工程,国际。j的纳米制造,IFAC机电货币学,int。j of Optomechatronics,Micro-Bio Robotics的J,仿生工程杂志,光(科学与应用),光学和精密工程,国际极端制造杂志,《今日材料》本文和其他科学/EI期刊。组织者:苏州高级研究所,中国科学技术大学纳米纳米研究中心,中国中国长春科学与制造业,中国组织者:阿尔胡斯大学,丹麦沃里克大学,英国德马克沃里克大学,英国贝德福德郡沃里克大学,英国教育部,ZALE MICRO和NANO Instuction,Chrone and Nano Instuction of Chrence and and Chronemurant of Charno and Nano and Nano and and and and and and Chronemurant of Charno
存档的先前策略版本CSNCT0541.04使用此医疗政策的说明为解释UnitedHealthCare标准福利计划提供了帮助。在确定覆盖范围时,必须将福利计划覆盖范围的联邦,州或合同要求称为联邦,州或福利计划的合同要求的条款,可能与标准福利计划有所不同。发生冲突,福利计划覆盖范围的联邦,州或合同要求政府。在使用此政策之前,请检查联邦,州或合同要求的福利计划覆盖范围。UnitedHealthCare保留根据需要修改其政策和准则的权利。为信息目的提供了此医疗政策。它不构成医疗建议。UnitedHealthCare还可以使用第三方开发的工具,例如Interqual®标准,以帮助我们管理健康福利。UnitedHealthcare医疗政策旨在与合格的医疗保健提供者的独立专业医疗判断有关,并且不构成医学或医疗建议的实践。
6. 建议 ................................................................................................................................................ 51 7. 结论 ................................................................................................................................................ 52 附件一:可用性启发法 ................................................................................................................ 53 附件二:ISEAL 可信度原则 ............................................................................................................. 55 作者 ............................................................................................................................................................. 59
欧盟网络安全局 (ENISA) 是欧盟致力于实现全欧洲高水平网络安全的机构。欧盟网络安全局成立于 2004 年,并得到《欧盟网络安全法》的加强,该局致力于制定欧盟网络政策,通过网络安全认证计划提高 ICT 产品、服务和流程的可信度,与成员国和欧盟机构合作,并帮助欧洲为应对未来的网络挑战做好准备。通过知识共享、能力建设和提高认识,该局与其主要利益相关者合作,加强对互联经济的信任,提高欧盟基础设施的弹性,并最终确保欧洲社会和公民的数字安全。有关 ENISA 及其工作的更多信息,请访问:www.enisa.europa.eu。
深神经网络(DNN)的几何描述有可能发现神经科学中计算模型的核心代表原理。在这里,我们通过量化其自然图像表示的潜在维度来检查视觉皮层的DNN模型的几何形状。流行的观点认为,最佳DNNS将其表示形式压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应具有较低的维几何形状。令人惊讶的是,我们发现相反方向的强烈趋势 - 具有高维图像子空间的神经网络在预测猴子电生理学和人类FMRI数据中对持有刺激的皮质反应时倾向于具有更好的概括性能。此外,我们发现,在学习新的刺激类别时,高维度与更好的性能相关,这表明更高的维度表示更适合于概括其训练领域。这些发现提出了一个一般原则,高维几何形状赋予了视觉皮层DNN模型的计算益处。
根据有效编码假设,当表示具有高维性并且不相关时,神经群体可以最佳地编码信息。然而,这样的编码可能会在泛化和鲁棒性方面有所代价。过去对啮齿动物早期视觉皮层(V1)的实证研究表明,这种权衡确实限制了感觉表征。然而,这些见解是否适用于人类视觉系统的整个层次结构,尤其是高级枕颞皮层(OTC)中的物体表征,仍不清楚。为了获得新的实证清晰度,我们在此开发了一组具有参数变化的 dropout 比例(p)的物体识别模型,这会诱导系统地改变内部响应的维数(同时控制所有其他归纳偏差)。我们发现,增加 dropout 会产生越来越平滑的低维表征空间。在 dropout 约为 70% 时观察到对损伤的最佳鲁棒性,之后准确率和鲁棒性都会下降。与自然场景数据集中枕颞皮质的大规模 7T fMRI 数据进行表征比较表明,这种最佳的 dropout 程度也与最大的突发神经预测性相关。最后,使用新技术对人类 fMRI 反应的特征谱进行去噪估计,我们比较了模型和大脑特征空间之间的特征谱衰减率。我们观察到模型和大脑表征之间的匹配与表征空间中效率和鲁棒性之间的共同平衡有关。这些结果表明,不同的 dropout 可能揭示分层视觉系统中高维编码效率和低维编码鲁棒性之间的最佳平衡点。
据报道,卵巢癌 (OC) 是全球第三大常见妇科恶性肿瘤,也是最致命的癌症类型 (1)。2020 年共报告了 313,959 例新诊断病例和 207,252 例相关死亡病例 (2)。由于 OC 细胞 (OCC) 通常表现为无症状,因此 75% 以上的病例是在晚期才被诊断出来的,通常是在肿瘤扩散到整个腹部之后 (3)。目前,OC 的标准治疗包括最大限度的细胞减灭术,然后进行铂类化疗 (4)。虽然大多数患者在常规化疗后进入临床缓解期,但复发率高达 85% (5)。此外,全球许多国家的 OC 总体 5 年生存率均低于 50% (6)。几乎 90% 的卵巢肿瘤属于上皮性卵巢癌 (EOC) 类型,该类型分为五种组织学亚型:浆液性肿瘤(约占 EOC 的 80%)、粘液性肿瘤、子宫内膜样癌、卵巢透明细胞癌和混合性肿瘤 (7)。然而,复发病例通常具有化疗耐药性,