对自动移动操纵器的需求是多种应用程序中的几种应用程序的核心,例如精密农业[1],工业安装[2],搜索和救援[3]或人类援助[4]。一般而言,移动操纵器必须同时执行移动基础的导航任务,并为机器人臂进行操纵。必须考虑几个挑战以执行这两个任务。从感知的角度来看,机器人系统必须配备可以检测不同地标并分析周围环境的传感器。此外,有必要确保用于执行任务的地标保留在传感器的视野中。从控制的角度来看,控制方案必须同时处理移动基础和机器人组,以使两个子系统之间的协作并避免惩罚完成另一个任务的动作。最后,有必要将机器人臂的控制与移动基础的位移进行协调,以避免机器人系统通过延伸的臂导航的情况,从而在末端效果下导致显着振动,并增加与外部元素奇异构型和碰撞的风险。与任何机器人系统一样,有许多控制移动操纵器的方法。广泛使用的解决方案包括在欧几里得空间中表达任务。在这种情况下,机器人使用板载传感器来估计系统配置。LIDAR型传感器提供几何数据,从而可以准确估计,但不能提供对环境的先进感知。基于视觉的传感器提供丰富的环境信息,但姿势估计对错误高度敏感。使用摄像机时,另一种广泛使用的解决方案
主要关键词