对于高温(从 600 °C 到 962 °C),铂电阻温度计和热电偶比较的校准不确定度受到标准温度计的不稳定性和可重复性以及标准温度计温度不均匀性的限制。配有比较块的烤箱的工作体积。为了改善这些不确定性,我们研究了同时连接多个热管、使用不同传热流体并由同一压力调节系统控制的可能性。该实验装置被称为“温度放大器”,由两根充满钠和水的热管组成。本文对这项工作进行了盘点,该工作产生了一个可操作的工具,并介绍了相关的校准不确定性。
传统散热器只是金属片的形状,依靠放置位置和周围空气从放大器中吸收热量。ICTunnel™ 更为复杂,其作用类似于调节体温的人类下丘脑。ICTunnel™ 采用铝粘合翅片散热器,这种散热器用于高功率医疗、激光和测试设备。它利用低热质量的原理,因此加热速度快,但冷却速度也快。在其相对较小的尺寸内有翅片,提供近 31 平方英尺的表面积。其操作的关键在于翅片的间距——尽可能靠近彼此以最大化隧道内的表面积,但不要太近以免彼此加热。ICTunnel™ 使用无噪音风扇以及压力和温度传感器来维持放大器的目标温度。
• AI HUB - AI Hub 团队负责制定 AMP 的 AI 战略和路线图,并构建和管理 AI/生成式 AI 解决方案,以实现组织的业务战略,并协助组织转型以实现 AI 赋能的未来。 • 战略、架构和绩效 - 该团队是整个 AMP 技术战略、治理和运营模式的管理者。阐明未来状态架构、综合路线图,并报告我们的绩效和进度 • 与业务保持一致的技术功能 - 我们确保技术成为所有业务部门的真正合作伙伴,共同创造需求并确定优先事项 • 数字、数据和集成 - 该团队是我们未来增长机会的引擎,以客户体验和数字业务模式为重点。还包括自动化、机器人技术和所有客户渠道技术 • 基础设施和服务管理 - 该团队确保我们以适当的成本点保持业务运行 - 从网络和存储到工作场所平台以及成熟的服务运营和管理 • IT 安全、风险与合规 - 该团队确保我们的安全、符合技术风险偏好并始终合规。还包括金融犯罪行动
与 QSC 的 DCP(数字影院处理器)、DCM(数字影院监视器)和 DXP(数字扩展处理器)配合使用,形成一个完整的系统解决方案,大大降低人工和布线成本
BBS1C4ALP (2024) 适用于超宽带高功率线性应用;该放大器采用高功率 RF MOSFET 器件,可提供宽频率响应和动态范围、高增益、低失真和良好的线性度。采用先进的宽带 RF 匹配网络和组合技术、EMI/RFI 滤波器和所有合格组件可实现卓越的性能和高效率。该系统包括通用电压、单相、电源和内置强制风冷系统。Empower RF 的 ISO9001 质量保证计划确保一致的性能和最高的可靠性。 固态 AB 类设计 瞬时超宽带 体积小巧、重量轻 前面板手动增益调节或 LCD 控制器 适用于 CW、AM 和 FM(其他调制类型请咨询工厂) 50 欧姆输入/输出阻抗 高可靠性和坚固性 电气规格 @ 208V AC、25 ° C、50 Ω 系统
型号 BBS0D3ERR (SKU 2048) 放大器系统适用于宽带高功率线性应用、实验室和 RFI/EMC 敏感度测试。该放大器采用高功率推挽式 MOSFET 器件,可提供高增益、宽动态范围、低失真和良好的线性度。通过采用先进的宽带 RF 匹配网络和组合技术、内置高质量通用电压电源、EMI/RFI 滤波器、机加工外壳和所有合格组件,可实现卓越的性能、长期可靠性和高效率。Empower RF 的 ISO9001 质量保证计划确保一致的性能和最高的可靠性。 固态线性设计 瞬时超宽带 体积小巧、重量轻 内置控制、监控和保护电路 适用于 CW、AM 和 FM(对于其他调制类型,请咨询工厂)。 50 欧姆输入/输出阻抗 高可靠性和坚固性 电气规格 @ 208 VAC、25 C、50 系统
在超导量子电路(例如量子位)中,信息以微波量子信号的形式处理和传输。在量子信息协议结束时,这些信号必须由室温电子设备记录。由于微波量子信号通常由很少的光子组成,因此必须放大它们才能达到合理的信噪比。因此,量子信号的低噪声放大至关重要。现代的低噪声mi-crowave放大器是建立在超导Josephson参数设备的基础上的,例如频率驱动的Josephson参数放大器(JPA),允许达到放大器的标准量子限制,甚至超越了它。当前的JPA是由超导量子干扰装置(Squid)与超导Coplanar波导谐振器相结合的。组合系统充当可调的非线性微波谐振器,其频率可以通过外部磁场在原位变化。机械类似物将是可变长度的摆,可以调整其本征频率。可以将非线性微波谐振器的可调节性通过在谐振频率的两倍的两倍上施加到参数上泵送JPA。这又可以导致出现在JPA处的弱量子信号的强大参数扩增。可以进一步利用相同的参数放大机制,以以挤压真空状态的形式生成真正的量子信号。在这种实践培训中,学生的使命是通过通过频道驱动的超导JPA进行实验研究量子量子限制的放大现象。This goal can be split in several parts: (i) analyze the magnetic field dependence of the JPA's resonance frequency via microwave transmission measurements with a Vec- tor Network Analyzer (VNA) and determine the JPA frequency modulation period in terms of the magnetic coil current, (ii) find a suitable working point for parametric amplification and record the corresponding resonance response, (iii) apply a microwave pump signal以适当的频率获得并测量实质性参数扩增的增益。