通过土壤碳管理(SCM)提高土壤碳固执的摘要先前的研究尚未将社会组成部分整合到生态系统中。了解经验丰富的农民如何结合土壤管理实践的社会和生态组成部分,我们使用了社会生态系统(SES)框架。这项研究研究了农民的SCM实践的分布和模式,并根据澳大利亚亚热带温带蔓延土地的旋转放牧制度进行了基于固有土壤肥力的两种农业人群的比较。二十五名放牧农民的土地(n = 13)和中等(n = 12)的生育土壤接受了有关SCM的访谈,以及尽管使用SES框架有气候限制,但他们如何维持放牧的政权。两个农业人群(低育种农场和中等生产农场)都表现出了继续其放牧制度的决心,因为好处是多种多样的,并影响了全农场的可持续性。农场低的农民强调了许多SCM结果,但对实现它们的信心较小。农民以整体方式专注于SCM实践的农业环境益处,而不是增加土壤碳的单一目标。接受采访的农民报告说,即使没有衡量其中一些益处,也可以从其放牧制度中获得许多好处,包括改善生产,土壤水分保留和土壤健康。在更“压力”的环境中,农民的土壤生育能力低,也强调了心理健康和景观美感是SCM的结果。农民的SCM的这些特征提供了不容易量化的重要好处,但也有助于鼓励其他农民管理土壤。旋转放牧的长期从业者,例如本研究中的农民,可以为更有针对性,定制和细微差别的政府政策提供有用的见解,该政策侧重于全农场可持续性,这也可以改善澳大利亚类似地区的土壤碳库存。
代谢分析是在一月份与牛群分组的代表进行的,评估了牛群的营养和健康状况。一项重要的资产,可让您深入了解母牛的蛋白质,能量和矿物质状态。Rhyd y Gofaint的结果表现出极好的痕量矿物水平,但是,哺乳期中有一些可疑的能量平衡结果。因此,使用针pil刺血样品10-20天,对酮水平进行了进一步的监测,以深入研究结果。这有助于识别和治疗几例亚临床酮症病例,可能会增强受影响的牛的产量,健康和生育能力。早期检测高风险母牛的关键要素。
在演讲中,气候变化计划负责Nekai Eversole详细介绍了该计划的目标,该目标主要由BAA部落气候弹性拨款(399,000美元)和美国EPA的气候污染减少赠款资助。这些资金支持环境技术人员,社区外展和可持续农业工作,包括计划的温室和示范农场,旨在教授水有效的农业和土壤保护。
摘要。固氮微生物(固氮菌)通过将氮气还原为生物可利用氮,显著影响海洋生产力。最近,非蓝藻固氮菌(NCD)已被确定为海洋固氮的重要贡献者。其中,Gamma A 是研究最深入的海洋 NCD 之一,因为它无处不在;然而,控制其分布的因素仍然未知。特别是,微型浮游动物摄食作为自上而下控制的重要性尚未得到检验。在本研究中,我们使用 nifH 扩增子测序研究了固氮菌群落结构,并使用稀释实验和定量聚合酶链反应(PCR)相结合的方法量化了 Gamma A 的生长和微型浮游动物摄食死亡率,地点位于日本南部海岸黑潮北缘光照充足的水域。在研究区域,Gamma A 普遍存在并在固氮菌群落中占主导地位,而蓝藻固氮菌的相对丰度较低。Gamma A 的微型浮游动物摄食率明显高于整个浮游植物群落,并且通常与其生长率保持平衡,这表明 Gamma A 可以有效地将固定氮转移到更高的营养级。尽管 Gamma A 的生长率对营养物添加没有表现出明显的反应,但 Gamma A 的丰度与营养物浓度和微量元素含量有显著的关系。
慢性餐后炎症与多种慢性疾病有关,例如肥胖,糖尿病,心血管疾病和癌症以及代谢综合征。所有这些都与消耗红肉和乳制品有关(Micha等,2012; Chan等,2011)。此外,在密集的温带放牧系统下,高度取决于对草的合成N输入,大约82%的尿液被排出到牧场上。通常,将20-30%的N浸入水道中,而随着温室气n 2 o,2%丢失了。水道中的N含量高与广泛的环境降解有关,包括在水面上产生藻类的富营养化,偶尔会杀死鱼类,甚至可以通过剥夺氧气来“杀死”湖泊。此外,对环境的n损失也可能对人类健康有害;蓝色婴儿综合征是一个健康问题,主要与饮用水中高水平的硝酸盐有关,导致婴儿的高铁血红蛋白血症,这在严重的情况下可能是致命的。在饮用水中消耗的高硝酸盐还可以增加发生结肠直肠癌,甲状腺疾病和神经管缺陷的风险(Marshall和Gregorini,2021年)。难怪一些追求健康的消费者越来越多地要求没有动物产品的食物景观!
本出版物中包含的任何建议,建议或意见不一定代表澳大利亚肉类和牲畜(MLA)的政策或观点。没有首先获得特定独立的专业建议,任何人都不得根据本出版物的内容采取行动。MLA对任何人都不承担任何责任,包括任何人,包括通过过失或以其他方式引起的任何错误或遗漏。©肉与牲畜澳大利亚2024。ABN 39 081 678 364这项工作是版权。除了根据1968年版权法所允许的任何用途外,所有权利都明确保留。要求进一步授权的请求应针对新南威尔士州北悉尼市邮政信箱1961年的公司通信经理或info@mla.com.au。2
最近,人们对使用旋转和生物生物多样性的旋转和生物生物放牧系统的潜力越来越兴趣。围场放牧系统最初是为了提高牲畜系统的生产率而开发的,通常将草利用从典型的C.50%C.50%的固定库存系统中提高到65-80%。这是通过旋转高密度的牲畜来实现的(例如15-30 lu/ha)周围的大小高达2-3公顷,通常将每个围场2-3天放牧,休息时间至少为2-3周(冬季更长),然后返回同一围场。该系统受草高的约束,放牧和休息时间进行调整以匹配草的生长。这种旋转放牧形式主要是针对提高牲畜生产率的这种旋转放牧形式,不太可能是保护放牧的理想选择,因为它倾向于减少种植的多样性,而放牧的休息时间不太可能足够长,足以为开花植物或近巢鸟提供所需的益处。
必须转化动物源食品的生产和消费,以减轻负面环境结果,包括温室气体排放和土地利用变化。但是,牲畜也是某些情况下粮食生产和生计的关键,它们可以帮助保护生物多样性和某些生态系统。先前的研究尚未完全探索在生物多样性中使用放牧土地进行粮食生产的可持续性限制。在这里,我们通过估算限制于放牧区域的肉类和牛奶生产来探索“生物多样性限制”对草地反刍动物产量的生产,以及牲畜可以促进生物多样性的保存或恢复的放牧密度。根据干燥的生物量,生物多样性的生物友好型放牧强度分别为生物多样性限制,分别对应于当前基于草地的牛奶和肉类生产的9-13%和26-40%。这在全球范围内仅2.2千克牛奶和每年每年0.8千克肉类,但是管理和从肉类特殊化的肉类和奶油系统的改变和移动可能会增加潜在的产量,同时仍然保持在这种生物多样性限制的方法中。
必须转化动物源食品的生产和消费,以减轻负面环境结果,包括温室气体排放和土地利用变化。但是,牲畜也是某些情况下粮食生产和生计的关键,它们可以帮助保护生物多样性和某些生态系统。先前的研究尚未完全探索在生物多样性中使用放牧土地进行粮食生产的可持续性限制。在这里,我们通过估算限制于放牧区域的肉类和牛奶生产来探索“生物多样性限制”对草地反刍动物产量的生产,以及牲畜可以促进生物多样性的保存或恢复的放牧密度。根据干燥的生物量,生物多样性的生物友好型放牧强度分别为生物多样性限制,分别对应于当前基于草地的牛奶和肉类生产的9-13%和26-40%。这在全球范围内仅2.2千克牛奶和每年每年0.8千克肉类,但是管理和从肉类特殊化的肉类和奶油系统的改变和移动可能会增加潜在的产量,同时仍然保持在这种生物多样性限制的方法中。