evonik已确定了三个步骤,以提高相同粘度等级的效率,并降低了CO 2排放。第一步需要使用高级粘度指数设备,该指数提供了超高的粘度指数,并具有剪切稳定性,可优化油的粘度曲线以最大程度地提高效率。第二步是使用较低的粘度基油,从而进一步增加了发动机油的粘度指数。第三步是从汽油/柴油性能软件包切换到低粘性汽油的性能软件包。evonik已经调查了这种“三步方法”在最先进的发动机中的影响,该发动机是在现实的动态和静态发动机操作条件下,直至全负载。三步方法将同一SAE等级的燃油效率最大化超过1%,而不会损害石油消耗。三步方法不仅限于传统的内燃机,并且可以同样应用于混合动力发动机以及氢内燃机。
• $400,000 is available for this competitive grant program • The maximum award amount is $100,000 • Applications are due March 28, 2025 • Awards will be announced in May 2025 • Funds must be spent down by June 30, 2026 (municipalities and Met Council will work together to monitor spending and adjust/reallocate funds as needed) • The applying municipality must be served by a municipal public water supply system • New construction and new developments are不符合条件•无地方比赛要求•居民无需居民•居民可能是负责支付其水费的财产所有人或房客•市政当局必须制定公平标准以确定居民的参与要求•资金仅用于赠款;咨询和市政工作人员时间不符合•厕所更换必须与美国EPA Watersense标记为厕所
提取和分析详细的视觉信息。传统的人工神经网络(ANN)在这一领域取得了长足的进步,但是尖峰神经网络(SNN)的能源效率和以生物为基础的基于时间的处理而引起了人们的关注。然而,由于限制,诸如量化误差和次优膜电位分布之类的局限性,现有的基于SNN的语义分割方法面临着高精度的挑战。这项研究介绍了一种基于尖峰 - 深板的新型尖峰方法,并结合了正则膜电位损失(RMP-loss)来应对这些挑战。建立在DeepLabv3体系结构的基础上,提出的模型通过优化SNN中的膜电位分布来利用RMP-loss来提高分割精度。通过优化膜电位的存储,其中仅在最后一个时间步骤存储值,该模型可显着减少内存使用和处理时间。这种增强不仅提高了计算效率,而且还提高了语义分割的准确性,从而可以对网络行为进行更准确的时间分析。提出的模型还显示出更好的稳健性,以防止噪声,在不同级别的高斯噪声下保持其精度,这在实际情况下很常见。所提出的方法在标准数据集上展示了竞争性能,展示了其用于节能图像处理应用的潜力
引言大规模MIMO被认为是在现代无线通信系统(如5G NR及更高版本)中实现所需数据速率、带宽和可靠性的关键技术[1][2]。在基站(BS)中使用大型天线阵列(NT>64)可以显著提高信噪比(SNR),并通过指向特定位置的窄波束实现空间分集传输[3]。这两个特性使得在24至52 GHz的较高频带上进行毫米波通信变得可行[4]。事实上,它们是克服频谱较高部分传播路径损耗增加的有效方法[5][6]。然而,由于射频(RF)链数量的增加,大量天线也意味着更严格的硬件要求,从而导致更高的功耗[5]。从这个意义上讲,提高系统能源效率(EE)已成为主要关注点和活跃研究的重点。一般而言,大规模 MIMO 系统中的 EE 可以通过降低信号处理复杂度及其相关功耗,或通过提高硬件资源利用率 1 [7] 来改善。根据这一标准,[8] 和 [9] 提出了一种联合优化时域波束控制和峰均功率比 (PAPR) 降低的方法,其中计算复杂度显著降低,同时提高了功率放大器效率。然后,
高价值支付系统 (HVPS) 通常流动性密集,因为支付请求不可分割且按总额结算。找到处理付款的正确顺序以最大化这些系统的流动性效率是一个 NP 难组合优化问题,量子算法可能能够在有意义的规模上解决该问题。我们开发了一种算法,并在混合量子退火求解器上运行它,以找到一种支付顺序,以减少所需的系统流动性量,而不会大幅增加支付延迟。尽管当今量子计算机的大小和速度有限,但当使用 30 天的交易数据样本应用于加拿大 HVPS 时,我们的算法提供了可量化的效率改进。通过在每批 70 笔付款进入队列时对其进行重新排序,我们平均每天节省了 2.4 亿加元的流动性,结算延迟约为 90 秒。在样本中的几天里,流动性节省超过 10 亿加元。该算法可以作为集中式预处理器纳入现有的 HVPS 中,而无需对其风险管理模型进行根本性的改变。
编号 div>08/05/ea/ee(s)/08-蜜蜂 - 使用Ajdhjanayam,2001年(2001年52)(2001年52)(52 of 2001),使用第58节(2)第13(2)节(2)第13(2)节的第58节(2)第(2)节,使用由58(2)的第58(2)条提供的报价效率,Eff for 58(2) 2010, the Empower Bureau of Efficiency (Uri Sampra -Samprands, Ori Sampurlers (Building) and Certification of Ori Managers) is the process of Javajnayam, 2024, 2024 is the priority of India, India's national format In the extraordinary, such that the sub -section (1) of Section 58 of the Ajadhajanayam is appropriate, the information and suggestions and their suggestions and their建议(如果某人)参与意图过程及其建议。据报道,该州将在印度社会日期,在印度或之后的三十天或之后的社会上进行讨论。 div>
理由:据报道,肿瘤细胞表观遗传学,尤其是染色体可及性,与肿瘤免疫景观和免疫疗法密切相关。但是,确切的机制仍然未知。方法:使用全外活体测序分析13个用PD1免疫疗法治疗的结直肠肿瘤样品。使用测序(ATAC-SEQ)和RNA测序进行转座酶可访问的染色质测定法用于检测肿瘤细胞的染色体可及性状态和筛查调节途径。结果:Polybromo-1(PBRM1)是12个与免疫疗法敏感性相关的体细胞突变频率最高的基因之一。PBRM1/PBRM1结直肠癌的缺乏症促进了体内和体外微环境中CD8 + T和NK细胞的PD-1免疫疗法敏感性以及CD8 + T和NK细胞的趋化性。ATAC测序表明,SWI/SNF复合物的关键成分的缺失增加了肿瘤细胞中染色体可及性的增加,并通过激活NF-κB信号传导途径触发细胞因子的释放,例如CCL5和CXCL10。在BALB/C小鼠或结直肠患者衍生的肿瘤器官(PDTOS)中应用ACBL1(PRM1的ProC抑制剂)显着促进了对PD1抗体免疫疗法的敏感性。结论:我们的研究确定PBRM1/PBRM1缺乏症与结直肠癌的PD1免疫治疗敏感性呈正相关。基本的分子机制涉及调节染色体可及性,NF-κB信号通路的激活以及微环境中的免疫细胞浸润。这些发现确定了潜在的分子靶标,以增强结直肠癌的免疫疗法。
•“欢迎来到比利时的众议院”,比利时代表众议院副总裁*•“将欧盟绿色交易推向国家层面的成功和挑战” “越来越近:民族议会在欧洲产业的能源过渡和现代化方面的关键作用”,与欧盟成员国的单位关系负责人尤兰达·加西亚·梅兹基塔(Yolanda Garcia Mezquita主席:Jutta Paulus,MEP德国
供应链管理的快速发展是由旨在改善秩序履行过程的技术进步所驱动的。订购订单,这是仓库运营的关键组成部分,传统上依靠体力劳动,导致效率低下,错误和高运营成本。随着自动化,机器人技术和AI驱动的仓库管理系统的出现,供应链已经见证了速度,准确性和成本效益的实质性提高。对电子商务和全球贸易的需求不断增长,加剧了对更有效和无错误的采摘过程的需求。公司越来越多地投资于利用物联网(IoT)传感器,实时跟踪和AI驱动分析的智能仓储解决方案,以优化仓库运营。自动化,包括使用机器人采摘器和自动导向车辆(AGV),在提高订单履行速度并最大程度地减少库存差异的同时,减少了对手动劳动的依赖。此外,数字化转型正在通过整合基于云的仓库管理系统(WMS)来重塑传统供应链模型,从而促进实时可见性和数据驱动的决策。这些系统使企业能够简化物流运营,增强不同供应链利益相关者之间的协调,并对消费者需求的波动更有效地做出响应。尽管有明显的优势,但组织在实施这些技术方面面临一些挑战。高昂的实施成本,对自动化的抵抗力,集成复杂性以及网络安全威胁构成了无缝采用的重大障碍。本研究旨在探索企业如何有效地将技术整合到订购过程中,同时解决这些挑战以最大程度地提高效率和成本节省。通过分析现实世界中的案例研究和行业趋势,该研究试图提供有关技术驱动供应链未来的战略见解。
Siti Fatahiyah Mohamad,VéroniqueAguié-Béghin,Bernard Kurek,Xavier X.Coqueret。辐射诱导的N-异丙基丙烯酰胺在微晶纤维素上的移植物聚合:评估过氧化方法的效率。辐射物理与化学,2022,194,pp.110038。10.1016/j.radphyschem.2022.110038。hal-03583793