锂离子电池的容量降解和安全危害的发生与各种不良侧电化学反应密切相关。尽管如此,这些副反应彼此之间是非线性交织的,并随着循环的增加而动态地发展,这对锂离子电池容量衰减的快速预测施加了主要的障碍。通过将电池视为黑匣子,以机器学习为导向的方法可以以有希望的准确性来实现预测。此处是一个数值模拟 - 基于基于的机器学习模型是为了预测故障之前的电池容量的开发。基于电池的恶化机制,将数值模型应用于仅测试25个电池的数据,以扩展144个组数据,从而导致数字双重数据集,该数据集可以可靠地预测锂离子电池的最大累积能力,误差小于2%。迭代培训的工作流程极大地加速了容量预测过程,并节省了99%的实验成本。©2022电化学学会(“ ECS”)。由IOP Publishing Limited代表EC出版。[doi:10.1149/1945-7111/ac95d2]
一般而言,《海洋哺乳动物保护法》(MMPA)要求国家海洋渔业服务(NMFS)使用可用的最佳科学信息。国会并未定义MMPA中的“最佳科学信息”一词,但从逻辑上定义为在代理机构采取行动或确定时可用的最佳科学信息,包括可靠和可靠的数据,定量分析,概念和数值模型,并考虑到可靠性和潜在的错误来源,并且使用了错误的工具,并且使用了专业的工具,并且使用了专业的工具,并且使用了专业的工具。最好的科学信息应公正地收集并根据其可靠性和科学严谨性进行客观评估;不应通过应用政策判断(例如在物种方面犯错误)来扭曲它。当NMFS人员通过对最佳科学信息进行价值评估,通过将拇指放在规模上时,该机构更有可能调节不会损害海洋哺乳动物的活动(或过度调节)活动,从而破坏其他合法和生产性的行为。
摘要:尽管对深度有效地利用深度低渗透率储层中的地理能力剥削的深度和有效利用的意义越来越多,但使用液压破裂技术仍需要实质性增强。在这项工作中,指出了深度低渗透性储层中精确的液压压裂应力测量的主要挑战,包括高岩石温度,高孔压力,高孔压力,压裂机制,岩石拉伸强度和钻孔条件。在这种情况下,提出了相应的几个未来研究指示。这些涉及热孔弹性效应,井下传感器和流量计,适当的室内拉伸强度测试方法,新的应力计算方法,混合测试技术以及精制的耦合数值模型。未来的研究建议将在随后的阶段为深度低渗透性储层中的地球能源开发提供几种新的观点。
建模方法基线沿海地区建模需要了解沿百慕大海岸线作用的沿海过程。该模型的基本起点是构建计算网格,可以在每个仿真时间步骤中从中计算出空间差异。Mike 21使用灵活的计算网络计算波浪和流体动力学。灵活的网格非常适合风暴潮计算,因为它允许建模大型复杂区域,这些区域可能需要同时详细的较小特征的分辨率。使用该岛东部和西部收集的数据建立并校准了该模型。所有用于模型验证的索引被认为可以接受模型性能。这种统计方法验证了光谱波模型,该模型被信任地使用,以对近岸地区日常波浪条件的长期数据库进行现实表示。百慕大的身体状况使得很难获得良好的电流数值校准。通常,电流变化很大,这不容易由数值模型表示。
过去半个世纪,计算机技术和电子技术的飞速发展彻底改变了我们的日常生活,为所有科学和工程分支提供了强大的新工具。水利工程实践和研究也不例外。例如,笔记本电脑每秒执行的浮点运算比四十年前推出的 Cray 1 超级计算机高出几个数量级,如今通常用于运行数值模型,以解决各种水利问题。此类模型结果的可信度取决于使用现场或实验室数据进行验证的程度。在大多数情况下,现场数据的收集非常昂贵且耗时,因此使用实验室数据是模型验证的更具吸引力的选择。此外,水利实验室中的物理模型提供了在受控条件下进行测试的可能性,并可以提供对基本过程的新见解,有助于加深对基础物理的理解。利用当今技术提供的工具,研究人员和从业人员能够分析复杂的流动问题和过程,这导致了液压实验室发展的两种趋势,即使用越来越复杂的仪器和设计用于研究特殊流动问题的创新实验设施。
总能量控制系统 (TECS) 已被提议作为一种替代控制概念,用于跟踪纵向飞行中的高度和速度。在 TECS 中,总能量(即动能和势能的总和)以及这两种能量形式之间的分配受到控制。油门和升降舵输入的组合通过提高设计的模型独立性并在公式中考虑高度和速度动力学之间的飞行机械耦合,克服了传统比例积分 (PI) 控制器的一些局限性。本文的目的是对两种控制方法进行比较,重点是跟踪精度、干扰抑制和瞬态响应。为此,使用 Vitesse 模型飞机作为试验台评估了一个案例研究。给出了使用两种控制方法的 Vitesse 闭环数值模型的仿真结果。Vitesse 的数值模型是使用 OpenVSP 和 VSPAero 生成的。为了找到两种控制方法的控制增益,对 PI 和 TECS 控制架构应用了相同的设计标准。结果表明,两种控制系统都能达到设计要求。速度和高度跟踪令人满意。但是,TECS 能够以较低的超调和较低的控制活动跟踪参考值。
Laugarnes和Elliðaár领域是自1930年代和1970年代以来雷克雅未克地区供暖的地区供暖的低温地热资源。两个系统中的稳定储层压力表明,它们的充电已达到准平衡。在Laugarnes中,观察到近恒定排放温度,在资源的主要模型中,地层温度被解释为稳定,表明稳态的热流动。通常在这些模型中简化这是固定压力和温度充电,并且对支持此充电所需的热源尚不清楚。在这项研究中,提出了新的概念模型,其中从表面上充电正在从浅层地层中提取热量,因为它将其渗入更深的生产区域。为了定量测试这一点,建立了一个艰难的2个数值模型,其中数值模拟仅通过使用升高的导电热通量作为边界条件,成功地复制了自然状态和生产历史记录。结果表明,提出的热量提取如何支持储层的生产,这表明该系统是合理的热源。
摘要:对 AISI-SAE AA7075-T6 铝合金进行了超声波和常规疲劳试验,以评估人工和诱导预腐蚀的效果。人工预腐蚀是通过在试样颈部沿试验试样的纵向或横向加工两个直径为 500 µ m 的半球形点蚀孔获得的。诱导预腐蚀是使用欧洲航天局的国际标准 ESA ECSS-Q-ST-70-37C 实现的。试样采用频率为 20 kHz 的超声波疲劳技术进行测试,采用频率为 20 Hz 的常规疲劳进行测试。两个施加的载荷比为:超声波疲劳试验中 R = − 1,常规疲劳试验中 R = 0.1。主要结果为人工和诱导预腐蚀对疲劳耐久性的影响,以及常规疲劳试验后的表面粗糙度变化。分析了裂纹萌生和扩展,并建立了数值模型来研究与预腐蚀坑相关的应力集中,以及从裂纹萌生到断裂的 I 型应力强度因子的评估。最后,获得了基材和横向有两个半球形坑的试样的应力强度因子范围阈值 ∆ K TH。
I. 简介 飞行测试是任何新型飞机开发过程的核心部分。作为测试的一部分,记录飞机在各种机动过程中的响应,从中可以确定描述其特性的飞机稳定性系数。然后可以使用这些估计值来验证或更新现有的数值模型。但是,测量到的响应有噪声、有偏差,并且可能以不同的速率采样,这可能导致模型不准确。因此,在估算这些稳定性系数之前,飞行路径重建 (FPR) [ 1 , 2 ] 通常是过滤和检查收集的飞行测试数据的一致性的第一步。FPR 是一种过滤技术,通过将飞机运动方程与响应测量相结合来重建飞机状态的时间历史。在这些方程中,飞机被表示为在空中移动的点质量。然而,为了提高燃油效率,飞机结构变得更轻,从而也更灵活。这反过来导致飞机的结构动力学与飞机飞行动态响应具有更大的相互作用。因此,为了正确地模拟这种相互作用,还需要重建结构的动力学和刚体状态。除了气动弹性建模外,跟踪飞机结构变形对于结构等应用也很重要
摘要:微机电系统 (MEMS) 为适用于结构健康监测 (SHM) 应用的传感器微型化提供了新技术。在本研究中,基于 MEMS 的传感器,特别是压电微机械超声波换能器 (PMUT),用于评估和监测螺栓连接结构系统的预紧力。为了使螺栓连接正常工作,必须保持适当的预紧力水平。在本研究中,连接到螺栓头部和末端的 PMUT 阵列分别用作一发一收超声波检测 (UT) 场景中的发射器和接收器。主要目标是检测由 PMUT 阵列产生的声波的飞行时间变化 (CTOF),该声波沿螺栓轴在无负载螺栓和使用中的螺栓之间传播。为了模拟螺栓接头的预紧力以及声波通过螺栓传输到一组 PMUT 和从一组 PMUT 传输的声波,我们创建了一组数值模型。我们发现 CTOF 与预紧力的大小呈线性关系。通过与初步实验结果进行比较,验证了数值模型的有效性。