环境团结网络(ESN)接收年度最佳组织奖环境团结网络(ESN)接收年度最佳组织奖,新的学生团体ESN忙于开始!他们每月举行市政厅,这是一个可持续性博览会,并与400多人创建了列表。ESN与SSP大使共同主持了一个正在进行的环境司法项目,与可持续性协调员的行动主义客厅对话以及可持续性战略计划(SSP)教育活动与SSP大使进行了交流。在春季,ESN每周提出有关SSP的规划。ESN还与学生乐队,50个供应商和600多名与会者一起组织了花园节。ESN一直致力于使卫斯理领导人对其可持续性承诺负责。ESN由于其成立年份的努力而获得了年度最佳组织奖。
文本驱动的3D场景生成技术近年来取得了迅速的进步。他们的成功主要是为了使用现有的生成模型进行迭代执行图像翘曲和介入以生成3D场景。但是,这些方法在很大程度上依赖于现有模型的外部,从而导致几何和外观中的错误积累,从而阻止模型在各种情况下使用(例如,户外和虚幻的SCE-Narios)。为了解决此限制,我们通常通过查询和聚集全局3D信息来完善新生成的本地视图,然后逐步生成3D场景。具体而言,我们采用基于三平面特征的NERF作为3D场景的统一表示,以限制全局3D的一致性,并提出一个生成的改进网络,通过从2D差异模型以及当前场景的全球3D信息中利用自然图像来综合具有更高质量的新内容。我们的广泛实验表明,与以前的方法相比,我们的方法支持各种各样的场景产生和任意相机传播,并具有提高的视觉质量和3D一致性。
• 使用潜意识、操纵或欺骗手段扭曲行为,妨碍知情决策,造成重大伤害。 • 利用与年龄、残疾或社会经济状况相关的弱点扭曲行为,造成重大伤害。 • 生物特征分类系统推断敏感属性(种族、政治观点、工会会员资格、宗教或哲学信仰、性生活或性取向),但标记或过滤合法获取的生物特征数据集,或执法部门对生物特征数据进行分类的情况除外。 • 社会评分,即根据社会行为或个人特征对个人或群体进行评估或分类,对这些人造成有害或不利的待遇。 • 仅根据分析或性格特征评估个人犯罪的风险,但用于增强基于与犯罪活动直接相关的客观、可验证事实的人类评估的情况除外。 • 通过从互联网或闭路电视录像中无针对性地抓取面部图像来编制面部识别数据库。 • 在工作场所或教育机构推断情绪,医疗或安全原因除外。 • 在公共场所为执法部门提供“实时”远程生物特征识别 (RBI),但以下情况除外:
自动文本识别是一个困难但重要的问题。它可以概括为:如何使计算机能够识别预定义字母表中的字母和数字,可能使用上下文信息。已经进行了各种尝试来解决这个问题,使用不同的特征和分类器选择。自动文本识别系统在准确性方面已经达到了人类的表现,并且在单一大小、单一字体、高质量、已知布局、已知背景、文本的情况下,速度超过了人类的表现。当上述一个或多个参数发生变化时,问题变得越来越困难。特别是,尽管近四十年来不断进行研究,但要达到人类在识别不同大小、不同风格、未知布局、未知背景的草书方面的表现,远远超出了当今算法的范围。在本报告中,我们详细分析了该问题,介绍了相关困难,并提出了一个解决自动文本识别问题的连贯框架。
现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
# Springer-Verlag Berlin Heidelberg 2011 本作品受版权保护。保留所有权利,无论涉及全部还是部分材料,具体而言是翻译、重印、重新使用插图、朗诵、广播、以缩微胶片或任何其他方式复制以及存储在数据库中的权利。 仅根据 1965 年 9 月 9 日现行版本的德国版权法的规定,才允许复制本出版物或其中的部分内容,并且必须始终获得 Springer 的使用许可。违反者将根据德国版权法受到起诉。 本出版物中使用的一般描述性名称、注册名称、商标等并不意味着(即使在没有具体声明的情况下)这些名称不受相关保护法律和法规的约束,因此可以自由使用。
摘要。视觉语言预处理(VLP)模型已在众多计算机视觉应用中被证明。在本文中,我们基于图像扫描和电子健康记录中的文本介绍,为医疗领域开发VLP模型,以促进计算机辅助诊断(CAD)。为了实现这一目标,我们介绍了MedBlip,这是一种轻巧的CAD系统,该系统启动了从架子冻结的预训练的图像编码器和大型语言模型中启动VLP。我们合并了一个MEDQFormer模块,以弥合3D医学图像和2D预训练的图像编码器和语言模型之间的差距。为了评估MEDBLIP的有效性,我们从五个公共阿尔茨海默氏病(AD)数据集中收集了30,000多个图像量:ADNI,NACC,OASIS,OASIS,AIBL和MIRIAD。在这个大规模的广告集中,我们的模型在健康,轻度认知障碍(MCI)和AD主题的零摄像分类中表现出了令人印象深刻的表现,并且还显示了其在M3D-VQA-AD数据集中的医学视觉问题An-Swering(VQA)中的能力。代码和预训练模型可在https://github.com/qybc/medblip上找到。
文本对图像(T2I)合成是一项艰巨的任务,该任务是对文本和图像域及其关系进行建模。最近作品实现的图像质量的实质性改进为Nuberon应用程序铺平了道路,例如语言辅助图像编辑,计算机辅助设计,基于文本的图像检索和培训数据增强。在这项工作中,我们提出了一个简单的问题:与逼真的图像一起,我们是否可以以一种不受影响的方式获得任何有用的副产品(例如前景 /背景或多类分割掩码,检测标签,检测标签),这也将使其他计算机视觉任务任务和应用受益?试图回答这个问题,我们探索了从给定文本中的逼真的图像及其相应的前景 /背景分割掩码。为了实现这一目标,我们与GAN一起实验了共进行分割的概念。具体而言,提出了一种名为“共裂”启发的GAN(COS-GAN)的新型GAN结构,该结构同时从不同的噪声矢量中同时生成两个或多个图像,并利用图像特征之间的空间关注机制来生成逼真的分段掩码,以生成生成的Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Agens。这种架构的优点是两倍:1)生成的分割掩码可用于专注于前景和背景,以改善生成的图像的质量,2)分段蒙版可以用作其他任务的训练目标,例如访问本地化和分割。在CUB,Oxford-102和可可数据集上进行的广泛实验表明,Cos-Gan能够改善视觉质量,并为发电图像提供可靠的前景 /背景掩码。
尽管上下文化的语言模型最近在各种NLP任务上取得了成功,但语言模型本身仍无法捕获长长的多句文档的文本共同(例如,段落)。人类经常就发言之前就何种方式以及如何发言做出结构性决定。通过这种高级决策和以连贯的方式构建文本的指导性实现被称为计划过程。模型可以在哪里学习这样的高级相干?段落本身包含在这项工作中称为自upervision的各种形式的归纳相干信号,例如句子顺序,局部关键字,修辞结构等。以此为动机,这项工作为新的段落完成任务p ar -c om;在图形中预测蒙版的句子。但是,该任务遭受了预测和选择相对于给定上下文的适当局部内容。为了解决这个问题,我们提出了一个自我监督的文本计划,该计划可以预测首先说出的内容(内容预测),然后使用预测的内容指导验证的语言模型(表面实现)。SSPlanner在自动和人类评估中的段落完成任务上的基线生成模型优于基线生成模型。我们还发现,名词和动词类型的关键字的组合是最有效的内容选择。提供了更多内容关键字,总体发电质量也会提高。
