。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 12 月 22 日发布。;https://doi.org/10.1101/2023.12.22.573028 doi:bioRxiv 预印本
C4ADS(www.c4ads.org)是一个501(c)(3)非营利组织,致力于数据驱动的分析和基于证据的全球冲突和安全问题的报告。我们的方法利用非传统的研究技术和新兴的分析技术。我们认识到在现场工作,捕获本地知识并收集原始数据以告知我们的分析的价值。同时,我们采用尖端技术来管理和分析该数据。结果是一种用于预防冲突和缓解冲突的创新分析方法。©C4ADS 2023
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年11月27日发布。 https://doi.org/10.1101/2023.11.27.568863 doi:Biorxiv Preprint
DNA双链断裂(DSB),以确保基因组稳定性。至关重要的是,必须将DSB末端保持在一起才能及时修复。在酿酒酵母中,两种知之甚少的途径介导了DSB的终端。使用MRE11-RAD50-XRS2(MRX)复合物在物理上桥接DSB末端。另一个要求DSB通过EXO1转换为单链DNA(ssDNA),但桥接蛋白是未知的。我们发现该粘着蛋白,其加载器和SMC5/6用EXO1作用于Tether DSB末端。非常明显的是,寡聚中特异性受损的粘着蛋白未能束缚DSB,从而揭示了粘着蛋白寡聚的新功能。除了姐妹染色单体内聚力的已知重要性外,基于显微镜的微流体实验通过确保DSB终端连接来揭示凝聚蛋白在修复中的新作用。总的来说,我们的发现表明,粘着蛋白的低聚可防止DSB的末端分离并促进DSB修复,从而揭示了粘连在保护基因组完整性中的新型作用和作用。
研究了直接能量沉积制备的 AlSi10Mg 合金的断裂和拉伸行为。在室温下沿不同裂纹平面方向和载荷方向测试了三点弯曲断裂韧性和拉伸试样。在进行机械加工和测试之前,打印样品在 300 ◦ C 下进行 2 小时的热处理以释放残余应力。进行了微观结构和断口图分析,以研究每种裂纹取向的断裂机制和裂纹扩展路径。在裂纹平面方向上观察到断裂韧性的显著差异。裂纹取向在 XY 方向的试样具有最高的断裂韧性值( J Ic = 11.96 kJ / m 2 ),而 ZY 裂纹取向(垂直于打印方向)具有最低的断裂韧性值( J Ic = 8.91 kJ / m 2 )。断裂韧性的各向异性主要与沿熔池边界的优先裂纹扩展路径有关。在熔池边界处,孔隙优先出现,微观结构变粗,且 Si 含量较高,导致该区域的延展性较差,且抵抗裂纹扩展的能力较差。
申请人应具有机械工程、航空航天工程、船舶与海洋工程、土木工程和材料科学等专业的学士学位。具有硕士学位的研究生优先考虑。在以下领域有研究经验者将有很大优势:复合材料(制造/测试/分析)、FEA 模拟(使用 Abaqus/Ansys/LS-Dyna/COMSOL/内部代码)、科学编码(数值算法、网格生成、数据可视化等)
摘要:放射治疗是当今癌症管理的重要组成部分,利用不同方式的电离辐射(IR)来减轻癌症的进展。ir功能。其中最有害的是DNA双链断裂(DSB)。在进化过程中,较高的真核生物的细胞已经发展出四个主要的DSB修复途径:经典的非同源末端连接(C-NHEJ),同源重组(HR),替代性最终连接(ALT-EJ)(ALT-EJ)和单链退火(SSA)。这些机械上不同的修复途径具有不同的细胞周期和同源性依赖性,但令人惊讶的是,它们具有截然不同的效果和动力学的作用,因此对细胞存活和基因组维持无效。因此,在这些DSB修复途径的参与中预期进行严格的调节和协调是合理的,以实现最大可能的基因组稳定性。在这里,我们提供了有关这些修复途径支撑的分子机制的累积知识的最新综述,重点是C-NHEJ和HR。我们讨论了最近出现的因素和过程。我们概述了整个细胞周期中DSB修复途径选择的机制,并突出了DNA终端切除在此过程中的关键作用。然而,最重要的是,我们指出在低DSB载荷下对HR的强烈偏好,因此对于在细胞周期的G 2期中受辐照的细胞而言,IR剂量较低。我们进一步探讨了从高层到低限制误差的修复途径的过渡的分子基础,并分析了这种过渡对细胞生存能力和基因组稳定性的协调和后果。最后,我们详细阐述了这些进步如何有助于制定放射治疗中的癌症治疗方案。
DNA修复因子通过时空的隔离和DNA双链断裂(DSB)的溶解作用。最近的进步表明,某些DSB修复因子经历了液 - 液相分离(LLP),并显示出类似液滴的特性以及动态材料交换。重要的是,LLP调节了各种生物学过程,异常LLP参与了农业疾病的病理发展。此外,DSB修复过程中DNA修复因子的动态冷凝和溶解的表型呈现了LLP的特性。显着,RNA,聚(ADP-核糖)[PAR]和转录后修饰(PTM),例如磷酸化,泛素化和甲基化,被认为有助于DSB修复因子的LLP。从DSB期间LLP的功能的观点中,DNA修复因子可能会在DSB传感和DNA损伤修复信号转导中作用,参与同源推荐(HR)(HR)和非同源性端始终连接(NHEJ) - 介导的DSB介导的DSB修复,并调节下游径流的途径。基于这些发现,研究人员专注于
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2023年9月6日发布的此版本中显示此版本的版权所有。 https://doi.org/10.1101/2023.08.29.555258 doi:Biorxiv Preprint
。STHCSM的RNA裂解在每个切割位点生成2',3'> P和5'-OH,我们假设RTCB的连接酶活性参与了图中确定的RNA修复。1(中间)。b)用抗RTCB或抗ACTB(加载对照)抗体的蛋白质印迹,用(+)或没有( - )RTCB耗竭的293T细胞的裂解物进行抗体。参见图中的未编写图像。S2。c)PARK7成绩单针对5
