DNA构象包括DNA链的三维结构,在与基因组调节有关的各种生物学活性中起着关键作用。 1 - 9,例如,在基因组包装的复杂过程中,DNA下循环,折叠和盘绕,最终导致了高度冷凝的结构的术语,称为铬斑。 10,这种动态重组对于核内基因组的有效压实和基因表达的调节至关重要,因为不同的构象状态可以影响DNA对转录因子和其他调节蛋白的可及性。 11类似于基因组包装,其中长的DNA聚合物通过小孔螺纹螺旋成狭窄的体积,纳米孔中的DNA易位也会由于力场,流体环境和DNA构象包括DNA链的三维结构,在与基因组调节有关的各种生物学活性中起着关键作用。1 - 9,例如,在基因组包装的复杂过程中,DNA下循环,折叠和盘绕,最终导致了高度冷凝的结构的术语,称为铬斑。10,这种动态重组对于核内基因组的有效压实和基因表达的调节至关重要,因为不同的构象状态可以影响DNA对转录因子和其他调节蛋白的可及性。11类似于基因组包装,其中长的DNA聚合物通过小孔螺纹螺旋成狭窄的体积,纳米孔中的DNA易位也会由于力场,流体环境和
黑色素瘤是一种放射性癌症。黑色素瘤放射性可能是由于几个因素,例如色素沉着,抗氧化剂防御和高脱氧核糖核酸(DNA)修复功效。然而,辐照诱导RTK的细胞内易位,包括CMET,它调节对DNA损伤激活蛋白质的反应并促进DNA修复。相应地,我们假设共同靶向的DNA修复(PARP-1)和相关激活的RTK,尤其是C-MET,可能会使野生型B-RAF原始癌,丝氨酸/苏氨酸激酶(WTBRAF)梅拉瘤呈hird-type B-RAF原始型原型,其中RTK经常上升。首先,我们发现PARP-1在黑色素瘤细胞系中高度表达。Olaparib或其KO抑制PARP-1抑制了黑色素瘤细胞对放射疗法(RT)的敏感性。同样,克唑替尼或其KO放射敏感的特异性抑制作用使黑色素瘤细胞系抑制。从机械上讲,我们表明RT会导致C-MET核易位与PARP-1相互作用,从而促进其活性。这可以通过C-MET抑制来逆转。因此,与C-MET和PARP-1抑制相关的RT不仅会对肿瘤生长抑制作用产生协同作用,而且在治疗后所有动物的肿瘤再生控制中也产生了协同作用。因此,我们表明在WTBRAF黑色素瘤中,将PARP和C-MET抑制与RT结合起来似乎是一种有希望的治疗方法。
钩端螺旋体是导致钩端螺旋体病的致病细菌,这是一种世界范围内的人畜共患病。所有脊椎动物都可以被感染,某些物种像人类易受疾病的影响,而小鼠等啮齿动物具有抗性并成为无症状的肾载体。诱导性是隐形细菌,已知可以逃避几种免疫识别途径并抵抗杀死机制。我们最近发表说,钩端螺旋体可以在细胞内生存并退出巨噬细胞,避免了Xenophapy,这是一种自噬的病原体靶向形式。有趣的是,后者是经常被细菌KAKE的抗菌机制之一,以逃避宿主的免疫反应。在这项研究中,我们探讨了钩端螺旋体是否颠覆了自噬的关键分子参与者以促进感染。我们在胶噬细胞中表明,钩端螺旋体触发了自噬适应器p62在类似点状结构中的特定积累,而不会改变自噬型号。我们证明了钩端螺旋体诱导的p62积聚是一种被动机制,具体取决于通过TLR4/TLR2信号传导的钩端螺旋力毒力因子LPS信号。p62是一种中央多效性蛋白,也通过转移因子的易位介导细胞应激和死亡。我们证明了瘦素驱动的p62的积累诱导了转录因子NRF2的易位,这是抗氧化剂反应中的关键参与者。然而,钩端螺旋体感染的NRF2易位并未像抗氧化反应中所预期的那样导致,但抑制了炎性介质的生产,例如Inos/NOOS/NO,TNF和IL6。©2023作者。总体而言,这些发现突出了一种与LPS和p62/NRF2信号相关的新型无源细菌机制,该机制减少了炎症并有助于诱导性的隐身性。由Elsevier Masson SAS代表Pasteur Inster出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
牙周病与心血管健康之间联系的机制是多方面的。慢性炎症、细菌易位和口腔微生物群的作用是这种相互作用的核心。最近的研究越来越多地强调口腔细菌(特别是牙龈卟啉单胞菌和具核梭杆菌等牙周病原体)对全身炎症的影响,这可能导致心血管疾病的发展。此外,口腔微生物失调的概念已成为影响口腔和心血管健康的重要因素。
表1。内容是由领先的科学家和小儿肿瘤学家开发的。它包含一个大型易位/融合面板,用于97个基因,具有超过1,700个融合同工型变体,在儿童肉瘤和白血病中发生了更多的综合性。它还包括针对82个目标的DNA面板,具有全面覆盖相关突变的目标,44个具有全外显子覆盖率(特别是肿瘤supressor基因)和24个CNV靶标。
基因组结构变体,包括缺失,重复,反演和遗传序列的易位,是遗传多样性的丰富资源。特别是,大西洋鲑鱼基因组显示出基因组结构变异的极端水平,这可能是由于它们最近的全基因组重复的独特历史所致。大西洋鲑鱼基因组中的结构变异是进化基因组学和水产养殖基因组学中最有希望的边界之一。然而,由于其复杂的性质,以及结构变体如何以功能优势驱动适应性进化,这尚待澄清。
细胞和基因治疗:在这种治疗中,使用病毒或基因组编辑来编辑基因组。由此产生的遗传异质性可能会影响这种治疗的安全性和有效性,但传统方法,例如扩增转基因细胞、分离克隆、通过测序或qPCR分析编辑效率,非常耗时费力。由于对细胞进行单独分析,单细胞分析可以跳过克隆扩增步骤,从而节省时间。此外,基因转移/基因组编辑的效率和意外易位的检测可以在单次检测中进行(图3)。
减数分裂通常是一个公平的过程:每个染色体都有50%的机会被包括在每个配子中。但是,与某些染色体相比,某些染色体比其他染色体更有可能变得异常。但是,为什么以及如何发展这种系统尚不清楚。在这里,我们研究了斑点的异常生殖遗传学,在男配子中,在男配子中仅包括母体染色体,而消除了父亲染色体。一种物种 - 伪球菌viburni - 一种隔离的B染色体,它通过消除父亲基因组消除而驱动。我们介绍带有和没有B染色体线的线的整个基因组和基因表达数据。我们确定了B连锁序列,包括204个蛋白质编码基因和卫星重复,占染色体的很大比例。B和核心基因组之间的几个PARA日志分布在整个基因组中,反对一个常染色体的简单或近期的染色体重复,以创建B。我们确实找到了一个373 Kb区域,其中包含146个基因,这似乎是最近的易位。最后,我们表明,尽管在减数分裂过程中表达了许多B连锁基因,但其中大多数是在最近易位的区域编码的。在减数分裂过程中,只有少数B-专有基因表达。在男性减数分裂过程中只有一个过表达,这是在驱动器发生的时候:乙酰基转移酶在H3K56AC中的乙酰基转移酶,在减数分裂中具有推定的作用,因此是进一步研究的有前途的候选人。
(RxLR) 基序,这是易位所必需的 [2,5]。RxLR 效应物递送到宿主细胞中的方式存在争议;关于 RxLR 基序与宿主质膜脂质结合和细胞自主摄取的说法受到了质疑 [4]。有证据表明 RxLR 基序是蛋白水解加工的位点,在分泌过程中被切割和去除 [5]。与卵菌效应物相比,真菌细胞质效应物缺乏与易位相关的明显氨基酸基序。然而,卵菌和真菌效应物中保守的结构折叠被认为有助于效应物递送 [4]。有趣的是,真菌病原体稻瘟病菌 [ 6 ] 和卵菌晚疫病菌 [ 7 ] 的细胞质效应物都是通过非常规蛋白分泌 (UPS) 途径从这些病原体中输出的,也就是说,尽管它们具有分泌信号肽,但它们的输出对抑制剂布雷菲德菌素 A 不敏感,因为抑制剂布雷菲德菌素 A 会阻断细胞内囊泡运动,从而阻止通过内质网 (ER) 和高尔基体的常规分泌。分泌途径可能是决定这些病原体向宿主输送的关键步骤。事实上,有证据表明,通过 UPS 途径从丝状病原体中输出细胞质效应物的情况非常普遍 [ 4 ]。除了了解细胞质效应物的分泌之外,一个关键问题是:它们如何进入植物细胞?
虽然大规模功能性基因筛选已经发现了许多癌症依赖性,但罕见癌症在这些努力中表现不佳,而且许多罕见癌症的依赖性状况仍然不清楚。我们对一种典型的罕见癌症——TFE3- 易位肾细胞癌 (tRCC) 进行了基因组规模的 CRISPR 敲除筛选,揭示了与线粒体生物合成、氧化代谢和肾脏谱系特化相关的途径中以前未知的 tRCC 选择性依赖性。为了推广到其他可能不易获得实验模型的罕见癌症,我们采用机器学习根据肿瘤或细胞系的转录谱推断其基因依赖性。通过将依赖性预测应用于肺泡软组织肉瘤 (ASPS),一种也是由 TFE3 易位驱动的独特罕见癌症,我们发现并验证了 MCL1 代表 ASPS 中的依赖性,但不代表 tRCC。 24 最后,我们应用我们的模型预测了 TCGA 中的肿瘤(11,373 个肿瘤;28 25 个谱系)和多种其他罕见癌症(16 种类型的 958 个肿瘤,包括 26 种肾癌的 13 种不同亚型)中的基因依赖性,从而确定了几种特征不明显的癌症类型中可能存在的潜在可操作漏洞。27 我们的研究结果将无偏功能性基因筛查与预测模型结合起来,建立了 28 种癌症候选漏洞的概况,包括几种目前缺乏潜在靶点的罕见癌症。29