通过卫星激发的电磁波和通过轨道驱动的波(Soimow)的测量值(SOIMOW)的测量来检测到一种称为空间对象识别的技术。具有等离子波的空间对象的接近度测量可能允许在传统上通过光学望远镜和雷达范围传感器实现的正常检测阈值以下的空间碎片。soimow使用原位等离子体接收器来识别轨道结合过程中的空间对象。卫星和其他空间对象穿过200到1000公里的高度之间的近地层,由电子收集和阳光下的照片发射引起电荷。这些超音速,带电的物体激发了各种血浆波。SOIMOW技术表明,可以观察到来自已知物体的电磁等离子体波到数十公里的范围,从而提供有关存在空间对象的信息。Soimow概念已用蜂群卫星上的无线电接收器仪器(RRI)证明。RRI数据的幅度,光谱和极化变化与电磁,压缩alfvén波的一致,这些电磁波是由跨磁场线传播的带电空间对象发射的。此外,可以通过较低的杂化漂移或离子声波不稳定性产生空间对象处的静电波。正在研究原位电场探头和对散射卫星波的远程检测,以确定轨道物体的位置。
由于其广泛的地理覆盖范围和灵活的部署能力,卫星网络的最新进展引起了人们的兴趣,为全球通信和转变传统沟通方法提供了有希望的解决方案。尽管有这些进步,但当前的卫星系统仍面临诸如高繁殖延迟和高纬度区域的覆盖范围不足之处,特别是在地静止(GEO)系统中。低地球轨道(LEO)系统可以解决这些问题,主要用于语音服务,如虹膜系统所示,但遇到了财务困难。本研究旨在解决卫星网络中的安全问题,这是一个关键问题,因为这些网络越来越依赖于IP协议以及陆地节点和卫星链接的混合配置。以前的工作已经确定了对卫星网络的各种潜在安全攻击,并提出了不同的解决方案,但是这些解决方案通常缺乏全面的效力和鲁棒性。我们的方法涉及分析类似于Iridium System的卫星网络中的安全漏洞,该系统包括每个卫星上的卫星间链接(ISL)和路由器。我们审查并评估现有的安全措施,并提出增强功能以提高其有效性。我们的结果表明在当前系统中有很大的漏洞,但也表明,通过有针对性的改进,可以大大提高安全性。这项研究的含义是深刻的,表明更安全的卫星网络可以更好地支持关键的全球通信和服务,包括宽带互联网和数据服务,从而增强其可靠性和用户信任
简介:未来的火星任务,无论是机器人任务还是载人任务,都将依靠具有增强自主性的探测车来应对火星探索日益复杂的问题。尽管取得了进展,但火星探测车任务的运营管理在很大程度上依赖于持续的人为干预。因此,集成自主机动能力对于减轻地面控制中心的运营负担至关重要。随着探测车能力的进步,包括增强的传感和处理能力,机载实时网络变得至关重要。事实上,探索火星提出了一项复杂的技术挑战,需要管理太空探测车内的众多系统和子系统;这些组件之间的通信对于确保任务成功至关重要。在这种情况下,采用实时网络变得至关重要,以确保关键数据的传输和接收没有延迟或中断。特别是,当前的机载网络技术将无法满足这种日益增长的需求。集成时间敏感网络 (TSN) 架构对于支持自主性和确保可靠的实时数据传输至关重要。这种必要性促使航天器行业考虑使用 TSN 解决方案升级运载火箭和卫星上的机载网络 [1]- [4]。火星探测器的网络也必须遵循同样的趋势,因为 TSN 技术为解决这些任务中与通信相关的挑战提供了强大的解决方案。
简介:推定冰川地形在火星上的分布和形态为亚马逊晚期的气候历史提供了宝贵的视觉。同心火山口填充(CCF),小叶碎屑围裙(LDA)和线条谷填充(LVF),所有这些都被认为是碎屑覆盖的冰川沉积物[1],[2],[3],[3],[4],通常被其核心地形覆盖,并以其核心地形命名,其重新层次的人类大脑或水平的人类大脑coral brancal braintal to Aqualtic to Aqualtic coral coral coral coral coral coral coral coral coral coral coral coral coral coral。提出的针对大脑珊瑚地形的形成机制包括粉尘丰富的冰矿床的升华[2],升华和灰尘填充的循环[5],或由冻结冻结产生的岩石分类过程,类似于地球上排序的石头圈子[6]。后者将暗示偶发性融化,并具有关于火星近地面可居住性的天文学含义。大脑珊瑚降雨表面可以追溯到晚期亚马逊人[2],[5],[7],尽管以前的研究受到了小型研究领域的阻碍,并且高分辨率的Hirise Hirise图像的可用性受到了阻碍。我们通过采用了一种新颖的深度学习方法来建立这些先前的研究,可以有效地绘制整个火星表面的脑珊瑚地形[8],在这里,我们使用火山口统计来解释火星最近的地质和气候历史。
• Devas Multimedia Private Ltd 诉 Antrix Corporation Ltd(国际商会案件编号 18051/CYK)。该争议因 Antrix(印度国际空间研究组织的商业部门)撤销一项租赁两颗卫星空间段容量的协议而起,该协议旨在建立结合一颗卫星和一系列地面站的混合卫星-地面通信系统。Devas Multimedia 是一家在德国和毛里求斯有利益的公司,它与 Antrix 达成协议,根据该协议,Antrix 将建造、发射和运营两颗卫星,并将卫星上的 S 波段容量租赁给 Devas,用于通过印度提供宽带无线接入和音频视频服务。印度内阁安全委员会终止了该协议,理由是印度政府将宝贵的 S 波段频谱给了 Devas 而不是印度军方。2015 年,国际商会仲裁院裁定 Antrix 错误地拒绝了该协议,并判决 Devas 赔偿 5.62 亿美元及利息。该争端还引发了针对印度的相关投资条约索赔,以及一系列正在进行的执法行动。2022 年,印度最高法院裁定 Devas-Antrix 卫星合同受到欺诈的污染,此后,包括在最近的 2023 年 3 月的一项裁决中,德里高等法院撤销了 ICC 裁决(请参阅法律更新,德里高等法院维持以欺诈和与印度公共政策相冲突为由撤销 ICC 裁决)。这些裁决对 ICC 奖励的各种正在进行的执法行动的影响仍有待观察。
摘要:云与地球的辐射能量系统(CERES)能量平衡和填充(EBAF)产品 - 结合了Terra和Aqua卫星上的中等分辨率成像光谱仪(MODIS)仪器(MODIS)仪器,以创建地球辐射预算的记录(ERB)和相关的云特性。由于Terra和Aqua Orbit不再保持在固定的当地时间,EBAF最近过渡到CERES和NOAA-20上的可见红外成像辐射仪套件(VIIRS)仪器,以避免在记录中引入时间依赖性偏置。为了确保在纪录中的Terra,Terra和Aqua(Terra 1 Aqua)和NOAA-20部分之间进行平稳过渡,从任务之间的重叠期得出的区域气候调整将用于将整个记录固定在Terra 1 Aqua上。我们估计过渡后的全局月度异常中的随机误差为0.15 w m 2 2 2的大气顶(TOA)浮标为0.15 w m 2 2,云分数为0.1%,比相应异常的标准偏差小得多。由于ERB仪器的数量将从短短10年内减少到1个,因此EBAF记录中的数据差距很高,因此保持连续性的挑战。我们估计,2028年数据差距有33%的概率,2035年的概率为60%。使用一个卫星产品中计算出的TOA弹药和一项大气再分析的数据间隙桥接数据差距,导致误差比连续任务之间重叠时获得的误差大于4。
EAGLE-1 任务旨在开发欧洲首个自主的端到端太空量子密钥分发 (QKD) 系统。该任务由欧洲航天局 (ESA) 和 SES 牵头,并与多个欧洲国家航天局和私人合作伙伴合作。最先进的 QKD 系统将包括 EAGLE-1 低地球轨道 (LEO) 卫星上的有效载荷、光学地面站、量子操作网络和密钥管理系统。EAGLE-1 项目代表了下一代量子通信基础设施的重要一步,它提供了宝贵的技术成果和任务数据,并为 EuroQCI 计划的发展做出了贡献。德国航空航天中心 (DLR) 的通信和导航研究所 (IKN) 是 EAGLE-1 任务的重要合作伙伴,参与了太空和地面部分元件的研究和开发。这里我们报告了 QKD 发射器(QKD 有效载荷的重要组成部分)的开发,以及光学地面站 Oberpfaffenhofen (OGS-OP) 的定制,以进行 EAGLE-1 的 IOT 阶段。对于空间部分,DLR-IKN 负责 QKD 发射器的设计,包括软件和固件的开发。该发射器生成量子态,用于实现基于光信号的 QKD 协议,该协议将传输到地面。对于地面部分,OGS-OP 将作为 EAGLE-1 的在轨测试地面站。凭借对一系列量子通信卫星的专业知识以及新实现,OGS-OP 将首次验证有效载荷、光链路和 QKD 系统的性能。我们介绍了 OGS-OP 为该任务所做的主要开发,其中包括实施升级的自适应光学系统以校正大气畸变并优化入射光与单模光纤的耦合。
摘要 - 非事物网络(NTN)对于无处不在的连通性至关重要,可在遥远和非层面区域提供覆盖范围。但是,由于目前NTN是独立运作的,因此他们面临诸如隔离,可扩展性有限和高运营成本等挑战。与地面网络集成卫星的明显,提供了一种解决这些局限性的方法,同时通过应用人工智能(AI)模型实现自适应和成本效益的连接。本文介绍了Space-O-Ran,该框架将开放式无线接入网络(RAN)原理扩展到NTN。它使用分布式空间运行智能控制器(Space-rics)的层次结构闭环控制,以动态管理和优化两个域之间的操作。为了启用自适应资源分配和网络编排,所提出的体系结构将实时卫星优化和控制与AI驱动的管理和数字双(DT)建模集成在一起。它结合了分布式空间应用程序(SAPP)和分离的应用程序(DAPP),以确保在高度动态的轨道环境中的稳健性能。核心功能是动态链接接口映射,它允许使用卫星上的所有物理链接适应特定的应用程序要求并更改链接条件。仿真结果通过分析不同NTN链接类型的LAS限制来评估其可行性,表明群集内协调在可行的信号延迟范围内运行,而将非实时时间任务降低到地面基础架构对地面基础设施的降低可以增强对第六代(6G)网络的可扩展性。
小型太空机器人有可能通过以更短的时间和更低的成本促进基础设施的在轨组装,从而彻底改变太空探索。如果这样的系统还能够执行在轨维修任务,那么它们的商业吸引力将进一步提高,这符合当前限制太空垃圾和延长已在轨卫星寿命的动力。虽然成功演示了有限数量的能够在轨道上操作的技术,但这些系统仍然很大且是定制的。最近小型卫星技术的激增正在改变太空经济,在不久的将来,缩小太空机器人的尺寸可能成为一种可行的选择,具有许多好处。这一行业范围内的转变意味着一些用于缩小尺寸的太空机器人的技术,例如电源和通信子系统,现在已经存在。然而,在缩小尺寸的太空机器人能够执行有用的任务之前,仍需要克服动态和控制问题。本文首先概述了这些问题,然后分析了缩小系统尺寸对其操作能力的影响。因此,我们提出了最小的可控系统,以便利用现有技术实现小型空间机器人的优势。本文讨论了基础航天器和机械手的尺寸。所提出的设计包括一个安装在 12U 尺寸卫星上的 3 连杆、6 自由度机器人机械手。我们通过模拟评估了这种 12U 空间机器人的可行性,本文提供的深入结果支持了小型空间机器人是可行在轨操作解决方案的假设。2020 COSPAR。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
1. 在所有相关科学学科中,确定人类在火星表面要解决的最高优先级科学目标。一项单独的后续研究将调查载人火星任务太空阶段的最高优先级科学目标是什么。 2. 确定解决科学目标所需的样本和测量类型。 3. 确定并优先考虑几个科学活动,这些活动将实现已确定的最高优先级科学目标的子集,每个活动都包括人类规模的着陆器在火星上的前三次着陆。 4. 对于最高优先级的科学活动,根据现有数据确定适当着陆点的初步标准,以便实现科学目标。可能考虑的标准示例包括:1) 一定表面深度内的冰,2) 机组人员可以接触到的含盐材料,或 3) 有可供人类探险者进入的洞穴。不要求讨论具体的着陆点。 5. 确定每个科学活动解决已确定的科学目标所需的任何关键设备。 6. 讨论用于为科学活动分配优先级的标准。 7. 描述与月球探索的共同点。例如,讨论每个活动的设备和能力,这些设备和能力也可以为即将到来的人类月球、门户或国际空间站 (ISS) 探索任务开发和使用。如果相关且简单明了,请注明为月球、门户或 ISS 开发的任何设备/能力与火星探索相关。8. 确定与探索目标的关键协同作用。具体来说,讨论每个活动中的科学活动如何与 NASA 的《月球到火星战略和目标发展报告》协同作用。