摘要 尽管显示技术取得了进步,但许多现有应用仍依赖于使用较旧的、有时是过时的显示器收集的人类感知的心理物理数据集。因此,存在一个基本假设,即此类测量可以延续到更现代技术的新观看条件中。我们已经进行了一系列心理物理实验,以使用最先进的 HDR 显示器探索对比敏感度,不仅考虑了刺激的空间频率和亮度,还考虑了它们周围的亮度水平。从我们的数据中,我们得出了一个新颖的环绕感知对比敏感度函数 (CSF),它可以更准确地预测人类对比敏感度。我们还提供了一个实用版本,它保留了我们完整模型的优势,同时实现了轻松的向后兼容性,并在许多使用 CSF 模型的现有应用程序中始终产生良好的结果。我们展示了使用源自 CSF 的传递函数、色调映射和改进的视觉差异预测准确度进行有效 HDR 视频压缩的示例。
轻薄、时尚、性能卓越——联想 Q24i-20 显示器不仅能满足您的所有需求,还能满足您的更多需求。23.8 英寸 FHD(1920 x 1080)超大平面转换显示屏可满足您的所有需求——无论您是学生还是在家办公的专业人士。借助 120% sRGB 色彩空间显示屏,即使从广视角也可以看到鲜艳的色彩。该显示器配有时尚的镀铬高度可调支架,可提供极致的观看舒适度。其独特的设计是一项非凡的工程壮举,兼具风格和功能性。此外,支架还配有一个方便的集成手机支架,可安全放置您的智能手机。它采用自然低蓝光技术(经 TÜV Eyesafe 和 TÜV Hardware Low Blue Light 认证),可减少有害蓝光,不会产生任何色彩失真,并且无需任何设置,对眼睛无害。这款显示器采用超薄的 7.1 毫米外形,简约而美观。配备强劲的双 3W 扬声器系统,让您获得身临其境的体验。这款显示器在软件方面也非常强大。它与联想 Artery 软件兼容¹,可让您快速轻松地调整显示器控件。现在,您可以校准显示器显示性能、选择高级显示设置并定义颜色范围。查看联想 Q24i-20。您不太可能想看看其他产品。
1.1 显示器的历史 目前最先进的运输机上所采用的先进显示器反映了一个多世纪的发展历程。从莱特兄弟用作滑行指示器的绳子到现代电子玻璃驾驶舱,驾驶舱显示器一直是直接向飞行员呈现信息的手段。“这些飞机显示器是飞行员观察力量、命令和信息世界的窗口,而这些东西是无法作为自然发生的视觉事件或物体看到的”(Stokes & Wickens,1988)。直到出现了无视觉参考飞行的需求,以及随后“开发出可用作人工地平仪的陀螺仪”(Hawkins,1987),显示器的发展才受到认真关注。这种认真关注带来了重大进步。后来,另一项推动显示器发展的技术突破是电子技术的快速发展。这使得“伺服驱动仪表在 20 世纪 50 年代成为可能,然后设计师可以自由地将传感器放置在远离实际仪表的位置”(Hawkins,1987 年)。随着数字航空电子技术的不断发展,以及航空运输成为一种流行的旅行方式,人们越来越关注航空安全、人为因素和显示设计。随着飞机性能的提高,飞行员可以获得更多信息,显示器的数量和复杂性都在增加
摘要:在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了确定飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术来执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器获取过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,我们采用自修复神经模型 (SHNM) 来预测缺失数据。用于恢复的数据有 5200 个头部运动的 6-DoF 样本。SHNM 可实现超过 85% 的准确率来预测三组不同的缺失数据。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
2.2 物联网智能显示技术 周良、张玲玲、周久斌、刘金娥、秦峰,上海天马微电子股份有限公司,上海,中国 2.3 集成多屏驱动器的显示模块 周良、姚璐、张玲玲、周久斌、杜万春、刘金娥、秦峰,天马微电子集团,上海,中国 2.4 自由曲面和曲面显示器的高精度光学贴合 Eugen Bilcai,汉高集团,美国密歇根州麦迪逊高地 2.5 汽车外饰显示器的数字化造型和安全性 Johnathan Weiser、Richard Nguyen、Kimberly Peiler,欧司朗光电半导体公司,美国密歇根州诺维 Ulrich Kizak,欧司朗光电半导体公司,德国雷根斯堡 2.6 传感应用中高质量 SNR 的新方法 Gerald Morrison,SigmaSense,美国德克萨斯州奥斯汀 第三场:平视显示器 联合主席: Ross Maunders,FCA US LLC,美国密歇根州奥本山 Dan Cashen,大陆汽车集团,美国密歇根州奥本山 3.1 用于平视显示器应用的漫射微透镜阵列 Naoki Hanashima、Mitsuo Arima、Yutaka Nakazawa,迪睿合株式会社,日本宫城县多贺城市 Kazuyuki Shibuya,迪睿合株式会社,日本宫城县登米市 Jingting Wu,迪睿合美国公司;美国加利福尼亚州圣何塞 3.2 人类对平视显示器重影的感知研究 Steve Pankratz、William Diepholz、John Vanderlofske,3M 公司,美国明尼苏达州圣保罗 3.3 使用自由曲面光学元件的 3D AR HUD 计算全息显示器 Hakan Urey,CY Vision,美国加利福尼亚州圣何塞
摘要。提高飞行员的态势感知能力是下一代飞机驾驶舱设计的主要目标。飞行员的窗外视野是一个根本问题,由于恶劣天气、黑暗或飞机结构本身的原因,飞行员的视野经常会变差。解决这个问题的常用方法是通过机载传感器和包含地形和障碍物信息的数据库生成增强的周围环境模型。在直升机领域,环境的图像随后通过面板显示器或透明头戴式显示器呈现给飞行员。我们研究了第三种信息显示方法。这个概念——称为虚拟驾驶舱——应用了非透明头戴式显示器。利用这种虚拟现实显示器,可以结合现有的合成和增强视觉系统的优势,同时克服现有的局限性。除了对优缺点的理论讨论外,还展示了该概念在直升机海上作业中的两个实际实施示例。在基于游戏引擎 Unity 的模拟环境中进行了两项人为因素研究。它们证明了虚拟驾驶舱具有成为未来驾驶舱长期候选方案的普遍潜力。© 2019 光学仪器工程师协会 (SPIE) [DOI:10.1117/1.OE.58.5.051807]
PANTHR™ 大面积显示器 (LAD) 是一种独立的、容错的多功能显示器。它是一种最具价值的解决方案,可在卓越性能、生命周期可承受性、低风险和长期可支持性之间实现最佳平衡。 PANTHR 显示器可在单个单片 2560 X 1024 有源矩阵 LCD 上显示来自最多四个外部源的清晰、清晰的高保真图形和视频。PANTHR 独特的“全屏”容错功能可提供无与伦比的可靠性,并可无限使用整个显示器。