脑外科手术期间的功能映射用于定义控制关键功能且无法移除的大脑区域。目前,这些程序依赖于神经外科医生和电生理学家之间的口头互动,这可能非常耗时。此外,用于测量大脑活动和识别病理性与功能性大脑区域边界的电极网格分辨率低,与大脑表面的贴合度有限。在这里,我们介绍了颅内脑电图 (iEEG) 微显示器的开发,该显示器由 2048 个 GaN 发光二极管的独立阵列组成,这些阵列层压在微皮层电图电极网格的背面。通过在大鼠和猪身上进行的一系列概念验证实验,我们证明了这些 iEEG 微显示器使我们能够执行实时 iEEG 记录,并通过手术区域大脑表面上的空间对应光图案显示皮质活动。此外,iEEG 微显示器使我们能够识别和显示大鼠和猪模型的皮质标志和病理活动。使用双色 iEEG 微显示器,我们用一种颜色展示了功能性皮质边界的配准,并用另一种颜色显示了与癫痫样活动相关的电位演变。iEEG 微显示器有望在临床环境中促进病理性脑活动的监测。
抽象ARM Trustzone构成移动设备的安全骨干。基于信任的可信执行环境(TEE)促进了对安全敏感的任务,例如用户身份验证,磁盘加密和数字权利管理(DRM)。因此,TEE软件堆栈中的错误可能会损害整个系统的完整性。el3xir引入了一个框架,以有效地重新主机和模糊基于Trustzone Tees的安全监视器固件层。虽然其他方法集中于天真地重新安置或模糊的受信任应用程序(EL0)或TEE OS(EL1),但El3xir的目标是针对高度私有但未探索的安全监视器(EL3)及其独特的挑战。安全显示器通过各种安全的监视器呼叫揭示取决于多个外围设备的复杂功能。在我们的评估中,我们证明了最先进的模糊方法不足以有效地模糊COTS安全显示器。虽然幼稚的模糊似乎实现了可追溯的覆盖范围,但由于缺失的外围仿真而无法克服覆盖范围,并且由于输入空间较大和输入质量较低而导致触发错误的能力受到限制。我们遵循负责任的披露程序,并报告了总共34个错误,其中17个被归类为安全至关重要。受影响的供应商确认了其中14个错误,结果,El3xir被分配了6个CVE。
鉴于这些挑战,量子点彩色滤光片 (QDCF) 已被提出作为实现全彩微型 LED 显示器的替代方法 [2, 13, 17]。在该技术中,含量子点 (QD) 的材料(例如量子点光刻胶 (QDPR) 或量子点墨水)通过光刻或喷墨打印图案化为像素化阵列。然后,将该 QDCF 顶部玻璃以像素到像素的精度安装在全蓝色微型 LED 背板上。红色和绿色子像素中的红色 QD (R-QD) 和绿色 QD (G-QD) 会分别将蓝色微型 LED 发出的蓝光转换为红光和绿光,实现全彩显示。这样,只需要单色蓝色微型 LED 背板,这大大简化了传质过程,也减轻了温度引起的色移。在本文中,我们介绍了对 QDCF 微型 LED 技术的研究。我们使用光刻技术在 QDCF 顶部玻璃上图案化红色和绿色 QDPR。然后,将该顶部玻璃与蓝色微型 LED 背板精确粘合。测量所得器件的光学性能。此外,我们讨论了蓝光发射角度对 QDPR 厚度的适当选择以及优化精密粘合工艺以消除串扰的影响。结果,我们实现了具有良好显示性能的 1.11 英寸 228 ppi 全彩 QDCF 微型 LED 原型。讨论可能促进 QDCF 技术在微型 LED 显示器中的应用。
本报告根据全球报告倡议 (GRI) 标准 2021 编制,该标准是可持续管理报告的全球报告指南。它还符合气候相关财务披露工作组 (TCFD) 的披露建议,并纳入了绿色和平组织和联合国可持续发展目标 (UN SDG) 的指标。此外,为了反映全球可持续发展报告趋势,报告问题的结构考虑了气候相关披露标准,例如欧洲可持续发展报告准则 (ESRS) 和国际财务报告准则 (IFRS) S2。报告中呈现的财务业绩遵循韩国国际财务报告准则 (K-IFRS) 合并标准。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。然而,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三种模拟湍流水平(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低时(在所有振动下),基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它更慢且更不准确。模板没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生。我们的工作为受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制提供了新的信息。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。但是,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三个模拟湍流级别(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低(在所有振动下)时,基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它的速度较慢且准确性较低。模板并没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生这种情况。我们的工作提供了有关受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制的新信息。
摘要:增强现实(AR)显示将虚拟图像叠加在周围场景上,在视觉上融合了物理世界和数字世界,为人机交互开辟了新视野。AR显示被认为是下一代显示技术之一,引起了学术界和工业界的极大关注。当前的AR显示系统基于各种折射、反射和衍射光学元件的组合,例如透镜、棱镜、镜子和光栅。受底层物理机制的限制,这些传统元件仅提供有限的光场调制能力,并且存在体积大、色散大等问题,导致组成的AR显示系统尺寸大、色差严重、视场窄。近年来,一种新型光学元件——超表面的出现,它是亚波长电磁结构的平面阵列,具有超紧凑的占地面积和灵活的光场调制能力,被广泛认为是克服当前AR显示器所面临的局限性的有效工具。本文旨在全面回顾超表面增强现实显示技术的最新发展。我们首先让读者熟悉增强现实显示的基本原理,包括其基本工作原理、现有的基于传统光学的解决方案以及相关的优缺点。然后,我们介绍光学超表面的概念,强调典型的操作机制和代表性的相位调制方法。我们详细介绍了三种超表面设备,即超透镜、超耦合器和超全息图,它们为不同形式的增强现实显示提供了支持。详细解释了它们的物理原理、设备设计和相关增强现实显示的性能改进。最后,我们讨论了超表面光学在增强现实显示应用中面临的现有挑战,并对未来的研究工作提出了展望。
摘要虚拟和增强现实领域的显示技术会根据用户当前的观看条件影响人类表征的外观,例如远程呈现或娱乐应用中使用的化身。随着观看条件的变化,感知到的化身的外观可能会发生意想不到或不受欢迎的变化,这可能会改变用户对这些化身的行为并导致使用 AR 显示器时的挫败感。在本文中,我们描述了一项用户研究(N=20),其中参与者通过使用 HoloLens 2 光学透视头戴式显示器在镜子中看到自己站在自己的化身旁边。参与者的任务是在两种环境照明条件(200 勒克斯和 2,000 勒克斯)下将他们的化身的外观与他们自己的进行匹配。我们的结果表明,环境光的强度对参与者选择的虚拟形象的肤色有显著影响,肤色较深的参与者倾向于将虚拟形象的肤色调得较浅,几乎与肤色较浅的参与者的肤色相同。此外,尤其是女性参与者在环境光较亮的情况下会将虚拟形象的头发颜色调得较深。我们从技术限制和对光学透视显示器上虚拟形象多样性的影响的角度讨论了我们的研究结果。
A BSTRACT 虚拟和增强现实领域的显示技术会根据用户当前的观看条件影响人类表征的外观,例如远程呈现或娱乐应用中使用的化身。随着观看条件的变化,感知到的化身外观可能会发生意想不到或不受欢迎的变化,这可能会改变用户对这些化身的行为并导致使用 AR 显示器时的挫败感。在本文中,我们描述了一项用户研究(N=20),其中参与者通过使用 HoloLens 2 光学透视头戴式显示器在镜子中看到自己站在自己的化身旁边。参与者的任务是在两种环境照明条件(200 勒克斯和 2,000 勒克斯)下将他们的化身的外观与他们自己的进行匹配。我们的结果表明,环境光的强度对参与者选择的虚拟形象的肤色有显著影响,肤色较深的参与者倾向于将虚拟形象的肤色调得较浅,几乎与肤色较浅的参与者的肤色相同。此外,尤其是女性参与者在环境光较亮的情况下会将虚拟形象的头发颜色调得较深。我们从技术限制和对光学透视显示器上虚拟形象多样性的影响的角度讨论了我们的结果。