摘要:飞机驾驶舱基本上由模拟仪表组成,在过去,驾驶舱里到处都是模拟指示器。由于时代在发展,一切都是数字化的,因此出现了将模拟仪表数字化的新想法。因此,不再放置基本的六个仪表,而只固定一个 LCD,它可以准确显示所有六个基本仪表的值。现代飞机主要用于减轻飞行员的工作负担。迄今为止,对先进飞行仪表的研究主要集中在模式混淆或飞行员对系统信息的误解上。一些研究还发现,由于自动模式下的常规操作,飞行员的工作量随着手动飞行技能的降低而减少。在本研究中,为轻型航空器设计和实施了简单的航空电子仪器。目前,有少数商业产品提供数据和车辆状态,如高度、温度、空速等。然而,由于现代技术的应用,这种仪器的复杂性无法承受。本研究提出了一种新方法,利用最新的硬件和传感器准确地向用户提供关键数据。仪器中使用的商业硬件可能很容易从电子市场获得。此类设备可用于航空、汽车以及海上和陆地车辆,为用户提供重要数据。本研究详细解释了该设备的设计,可以使用 Arduino 和处理 IDE 构建基本电子电路。使用本研究中的方法,可以将具有安全性的仪器安装到任何飞行器上。I.简介 现代客机引入数字化有助于提高飞机的航程、整体性能和安全性。这种数字化减少了飞行员的体力负荷,并提高了飞行员对工作负荷的认识,其中包括显示系统及其编程工具的演变。美国联邦航空管理局打算引入数字数据通信作为飞机、地面设施和空中设施之间交换信息的一种手段。
表面微加工成功的光学应用之一是开发静电驱动微机械镜阵列(协调、可移动的反射或折射元件的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜段,用作较大显示器中的一个像素,元件的驱动使用二进制数字控制信号并行协调。在这样的系统中,已经证明简单微机械致动器的制造成品率可以接近 100%。此外,已经确定可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化的 CMOS 电子阵列上构建 MEMS 结构来实现的。已经提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微机械连续膜可变形镜。在自适应光学中,重要的是可变形镜既连续又可精确调节。本文描述的设备是使用表面微机械技术制造的第一种连续镜。� 体微机械连续镜之前已经展示过。2 � 表面微机械镜已在波士顿大学设计、制造和测试。该设备由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于底层表面法向静电致动器阵列上。两个特点将该设备与以前的表面微机械镜系统区分开来。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有因分段边缘而产生的衍射干涉,也没有因填充因子低于 1 而导致的光强度损失。此外,新的可变形镜面装置可以精确、连续地控制镜面元件
详细内容:单元 1 方法研究:工作研究的目的、目标、程序和应用;方法研究的定义和基本程序、工作的选择、各种记录技术,如概要流程图、流程图、人机图、双手流程图、字符串图、流程图、多项活动图、simo、循环图和计时循环图;改进方法的严格审查、开发、安装和维护;动作经济原理及其在工作设计中的应用;微动作研究、备忘录动作研究及其在方法研究中的使用。单元 2 工作测量:工作测量的介绍和定义、目标和基本程序;工作测量在工业中的应用;时间研究:基本程序、所需设备、时间测量方法、工作的选择、将工作分解为元素;要计时的周期数;评级和评级方法、津贴、标准时间的计算。工作抽样:基本程序、工作抽样研究的设计、进行工作抽样研究和建立标准时间。单元 3 工作评估和激励方案:Starlight 线、Tailor、Merrick 和 Gantt 激励计划 标准数据系统;基本和非基本预定运动系统、工作因素系统;方法时间测量 (MTM)、MOST 单元 4 人为因素工程:人为因素工程的定义和发展历史、人机系统的类型和特点、人与机器的相对能力;人为因素数据的开发和使用;信息输入和处理:信息理论简介;影响信息接收和处理的因素;感官输入的编码和选择。单元 5 显示系统和人体测量数据:显示 - 视觉显示的类型、视觉指示器和警告信号;因子和图形显示;听觉和触觉显示的一般原理、特性和选择。
通用动力公司向海军提供濒海战斗舰开放数据模型,以纳入 SHARE 知识库 通用动力公司将在 IDEX 上展示基于濒海战斗舰的多任务作战能力 通用动力公司员工被评为 2007 年技术领导者 通用动力公司团队获选实施美国政府的全国综合无线网络 德雷珀实验室、通用动力公司和雷神公司重新开放美林路大楼,作为美国海军的“综合支援设施”;增加就业 通用动力公司发布其全球海事边界数据库的更新版本 通用动力公司英国分公司入选 LISTENER 传感器数据融合计划的评估阶段 通用动力公司获得 GSA Alliant 技术解决方案合同 通用动力公司加拿大分公司入选哈利法克斯级现代化 - 作战系统集成计划竞标 通用动力公司获 7100 万美元合同,为国土安全部提供专业服务支持 通用动力公司英国分公司牵头团队获得 LISTENER 评估阶段合同 通用动力公司获 2000 万美元合同,用于分析目标识别和战斗识别技术 通用动力公司获 8300 万美元合同,用于开发和生产海军通用企业显示系统 通用动力公司收购 Mediaware International 通用动力公司获 9100 万美元合同,继续美国和英国潜艇控制系统工作 通用动力公司获 4800 万美元合同,为国土安全部 US-CERT 提供网络态势感知支持
首字母缩略词 AADT 年平均日交通量 AERMET 美国气象学会/环境保护署监管气象学 AERMOD 美国气象学会/环境保护署监管模型 ANP 年度网络计划(本文件) AMoN 氨监测网络 APCD 路易斯维尔大都会空气污染控制区 AQI 空气质量指数 AQS 空气质量系统 ARM 批准的区域方法 BAM 贝塔衰减监测器 BOF 基础氧气炉 CAPS 腔体衰减相移 CASTNET 清洁空气状况和趋势网络 CBSA 核心统计区 CFR 联邦法规 CSA 组合统计区 CSN 化学形态网络 CO 一氧化碳 CO2 二氧化碳 DNPH 2,4-二硝基苯肼 DRR 数据要求规则 DV 设计值 EJ 环境正义 EMITS 排放清单跟踪系统 EMP 增强监测计划 ESAT 环境服务援助小组 FEM 联邦等效方法 FID 火焰电离检测器 FR 联邦法规 FRM 联邦参考方法 GC 气相色谱仪 GC/MS 气相色谱仪/质谱法 HPLC 高压液相色谱法 HVAC 采暖通风空调 ICP/MS 电感耦合等离子体/质谱法 IDEM 印第安纳州环境管理局 INDOT 印第安纳州交通部 KDEP 肯塔基州环境保护部 LADCO 密歇根湖空气主管联盟 mm 毫米 mmBTU 百万英热单位 LEADS 领先环境分析和显示系统 mb 毫巴 MOA 谅解备忘录 MSA 大都市统计区 NAAQS 国家环境空气质量标准 NADP 国家大气沉降计划 NATTS 国家空气毒物趋势站 NCore 国家核心多污染物监测站
用于异常姿态恢复的合成视觉系统商用飞机驾驶舱显示技术 Lawrence (Lance) J. Prinzel III、Kyle E. Ellis、Jarvis (Trey) J. Arthur、Stephanie N. Nicholas 美国国家航空航天局兰利研究中心 弗吉尼亚州汉普顿 Daniel Kiggins 上尉 美国国家航空航天研究所 弗吉尼亚州汉普顿 一项针对全球 18 起失控事故和事件的商业航空安全小组 (CAST) 研究确定,在其中 17 起事件中,缺乏外部视觉参考与机组人员失去姿态意识或能量状态意识有关。因此,CAST 建议开发和实施虚拟日间视觉气象条件 (VMC) 显示系统,例如合成视觉系统,该系统可以促进机组人员在类似于日间 VMC 环境中的姿态意识。本文介绍了高保真大型运输飞机模拟实验的结果,该实验评估了虚拟日间 VMC 显示器和“背景姿态指示器”概念,以帮助飞行员从异常姿态中恢复。12 名商业航空公司飞行员进行了多次异常姿态恢复,并收集了定量和定性相关指标。描述了该 CAST 计划和 NASA“飞机状态意识技术”研究项目下的实验结果和未来研究方向。最近的事故和事件数据表明,运输类飞机的空间定向障碍 (SD) 和能量损失状态意识 (LESA) 正在成为所有国内和国际运营中日益普遍的安全问题 (Bateman, 2010)。SD 是指对飞机姿态的错误感知,可直接导致失控 (LOC) 事件并导致事故或事件。LESA 的典型特征是无法监控或理解能量状态指示(例如空速、高度、垂直速度、指令推力),从而无法准确预测维持安全飞行的能力。LESA 的主要后果是飞机失速。CAST 对 18 起失控事故的研究表明,在其中 17 起事件中,缺乏外部视觉参考(即黑暗、仪表气象条件或两者兼有)与机组人员失去姿态意识或能量状态意识有关。虚拟日间 VMC 显示 虚拟日间 VMC 显示旨在为机组人员提供类似的视觉提示,这些提示在外部能见度不受限制时可用(即在 VMC 下观察到)。飞机状态意识联合安全分析 (JSAT) 和实施小组 (JSIT) 报告 (CAST, 2014a; CAST, 2014b) 建议,为了提供必要的视觉提示,防止机组人员的 SD/LESA 导致 LOC,制造商应开发和实施虚拟日间 VMC 显示系统,例如合成视觉系统。为了支持这一实施,CAST 要求美国国家航空航天局 (NASA) 进行研究,以支持定义虚拟日间 VMC 显示的最低要求,以实现提高机组人员对飞机姿态意识的预期功能;请参阅 CAST 安全增强 200 (SE-200),标题为“飞机状态意识 - 虚拟日间 VMC 显示”。飞机状态感知 – 虚拟日间 VMC 显示器 NASA 开发了一个名为“飞机状态感知技术”(TASA)的项目,该项目部分解决了 CAST 的研究请求,以支持制造商设计和实施虚拟日间 VMC 显示器,这将提供必要的视觉提示以防止 SD/LESA 并有助于检测异常姿态和执行恢复。在大型运输飞机中,异常姿态在操作上定义为机头向上俯仰姿态大于 25 度、机头向下俯仰姿态大于 10 度、倾斜角大于 45 度或在这些参数范围内飞行但空速不适合条件。它们的预期功能是提高连续姿态、高度和地形感知能力,降低不稳定进近、无意中进入
解决方案,实现技术飞跃。虽然我们的行业尊重传统,但它重视创新。我们知道我们的增长取决于满足客户的需求和愿望——无论是现在还是将来。本期 Horizons 杂志包含几个故事来说明这一点。在封面故事中,您将阅读来自多个技术领域的 140 多名员工如何接受挑战,为 F-35 Lightning II 喷气式战斗机(美国最先进的战术飞机)设计和开发第三代头盔显示系统 (HMDS)。这款未来主义的头盔系统将是第一个提供全天候飞行和任务能力的系统。您将了解有关该计划的杰出技术成就的更多信息。例如,您会发现为什么我们的集成数字夜视解决方案对我们来说是一个真正的差异化因素。有关我们如何在技术上实现飞跃以满足客户需求的更多示例,请参阅文章“正在打造的传奇”。来自美国和巴西的员工共同努力,为巴西航空工业公司中轻型 Legacy 450 和中型 500 公务机提供最先进的驾驶舱。最终成果是 Pro Line Fusion® 驾驶舱,采用我们的 HGS-3500 紧凑型平视引导系统 (HGS™),能够呈现合成和新型多光谱增强视觉系统 (EVS) 图像。这种新型态势感知技术以前从未在中轻型和中型公务机领域使用过。我在领导商业系统时积极参与传奇计划,在领导政府系统时积极参与 F-35 HMDS 计划,因此这两个故事都让我回想起当团队齐心协力并专注于成功的解决方案时可以取得的成就。当人们齐心协力时,才能产生最好的想法和成果。我非常相信团队合作的力量,因为我知道它将帮助我们保持创新的前沿,我为所有齐心协力使罗克韦尔柯林斯取得成功的员工感到自豪。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。