在这里,我们使用密度功能理论比较了具有或没有反相边界的不同III-V晶体构型的稳定性,具有或没有反相边界的阶梯式SI底物,用于突然和补偿界面。通过电荷密度分解和机械应变的原子量表描述分析了不同异质结构的热力学稳定性。我们表明,III-V晶体通过在异方面的电荷补偿更改而适应Si Monoatomic步骤的配置要比形成反相对边界的配置要稳定得多。因此,这项研究表明,在III-V/SI样品中通常观察到的反相边界不是源自Si Monootomic阶梯边缘,而是来自不可避免的动力学驱动的单相3D III-V岛的合并。
近年来,固态电池(SSLB)因其通过用不易燃的固体电解质替代液体电解质来解决安全问题而受到广泛关注。理论上,具有高模量的固态电解质有望抑制枝晶的生长和渗透。此外,电化学稳定的固态电解质使高压正极与金属负极集成成为可能。层压配置允许双极结构和高度堆叠的单元电池。因此,固态电池还能够提高能量密度。然而,与 SSLB 开发相关的几个关键问题仍然存在,包括高稳定性固态电解质的制备、长寿命循环稳定性的提高、高级表征、界面化学的研究、高能量密度的实际实现、失效机制的分析以及与当前工业技术的兼容性。因此,本期特刊旨在收集与固态电池相关的最新研究、评论和观点。
Yazan Barazi,Nicolas C. Rouger,FrédéricRichardeau。I G集成与V GS衍生方法的比较,用于用于宽带隙功率晶体管的快速短路2D诊断。模拟中的数学和计算机,2020,10.1016/j.matcom.2020.05.011。hal-02972905
本期特刊旨在促进钻石科学家和工程师之间的科学知识交流,包括多晶和单晶。因此,我们诚挚地邀请科学家和工程师发表他们关于钻石成核和生长动力学、其物理和化学性质以及它们在各个科学技术领域(工业、医学、考古学等)的实用性的最新科学、理论和实验结果。最近对单晶和多晶金刚石材料的合成和利用的研究扩大了它们在现有和未来广泛应用领域的潜在用途,包括光学和电子学,以及生物医学等。我们还相信,这些材料是当今和不久的将来在固态物理、化学和工程领域具有巨大潜力的重要材料。我们邀请您为本期晶体特刊“多晶/单晶金刚石”撰稿,以便向讨论金刚石科学、技术和应用的多学科论坛提交论文。
摘要 — 神经形态计算是一个令人兴奋且发展迅速的领域,旨在创建能够复制人类大脑复杂动态行为的计算系统。有机电化学晶体管 (OECT) 因其独特的生物电子特性而成为开发此类系统的有前途的工具。在本文中,我们提出了一种使用 OECT 阵列进行信号分类的新方法,该方法表现出类似于通过全局介质连接的神经元和突触的多功能生物电子功能。我们的方法利用 OECT 的固有设备可变性来创建具有可变神经元时间常数和突触强度的储存器网络。我们通过将表面肌电图 (sEMG) 信号分为三个手势类别来证明我们方法的有效性。OECT 阵列通过多个门馈送信号并测量对具有全局液体介质的一组 OECT 的响应来执行有效的信号采集。我们比较了在有和没有将输入投射到 OECT 上的情况下我们的方法的性能,并观察到分类准确率显著提高,从 40% 提高到 68%。我们还研究了不同的选择策略和使用的 OECT 数量对分类性能的影响。最后,我们开发了一种基于脉冲神经网络的模拟,该模拟模仿了 OECT 阵列,并发现基于 OECT 的分类与基于脉冲神经网络的方法相当。我们的工作为下一代低功耗、实时和智能生物医学传感系统铺平了道路。
全栅环栅 (GAA) 是一种最佳器件配置,它能静电控制沟道长度最窄的晶体管 2,并最大限度地减少器件关断时的漏电流,从而使器件在每次切换时耗散更少。GAA 几何形状有多种可能,并且已经在水平 3 或垂直配置中得到验证。4 – 7 尽管技术解决方案有望最终将晶体管的栅极长度 L g 缩小到几纳米 5,但从一维(长栅极或大宽度)到全尺寸缩放的晶体管的转变对器件操作的影响仍有许多悬而未决的问题。其中,应明确解决所制造器件的质量和可能导致晶体管操作不良或电性能分散的波动源,以提出最终集成的解决方案。但是,经典的表征技术(如迁移率提取)不足以提供有关最终缩放时器件质量的信息,因为迁移率可能会在如此小的栅极长度下崩溃。 8 – 11 低频噪声可以成为一种非常精确的技术,用于表征低噪声纳米器件中的电子传输。12 , 13
纳米技术和新纳米材料对现代科学、技术和日常生活有着巨大的影响。术语“纳米材料”是指在不同领域具有多种应用的单一材料。新颖/改进的合成方法(物理、化学和生物)可用于合成这些材料,包括无机、有机和混合纳米复合材料,以实现对其物理化学性质的精确控制。迄今为止,纳米级技术正在积极研究和应用于解决从人类健康到环境问题等最紧迫的全球挑战。纳米材料和纳米结构在生物医学、生物分析和生物诊断、法医、农业、环境保护、水处理、食品工业、纺织工业、传感器、电子和通信领域有各种应用。在此背景下,本期特刊旨在发表原创研究论文和综合评论,讨论有关不同纳米材料的合成、先进性能研究和潜在应用的最重要问题。
在高能量物理中使用的大探测器系统中相互作用点附近的像素阵列的发展需要像素及其读数的高辐射硬度。基于量子井的像素设备,称为dotpix使用带有控制门的传感N通道MOS设备。埋入的GE层充当当前的调制门,该栅极定位通过撞击颗粒而产生的孔。通过si上GE的低温外延生长获得了Dotpix埋入的GE门。我们已经开始研究实现这些先决条件的不同方法:需要低温预算来减少GE和SI相互混合,这可能对DotPix操作有害。使用Si热氧化物与沉积的氧化物(例如氧化物)一起研究,这与二氧化硅不同。在这项研究中,二氧化硅和沉积的氧化物结合的可能性为另一种可能性。