摘要。全脑分割是将整个脑体积划分为解剖标记的感兴趣区域 (ROI),是脑图像分析中的关键步骤。传统方法通常依赖于复杂的管道,这些管道虽然准确,但由于其复杂性而耗时且需要专业知识。或者,端到端深度学习方法提供快速的全脑分割,但通常会由于忽略几何特征而牺牲准确性。在本文中,我们提出了一种新颖的框架,将以前由复杂的基于表面的管道使用但被基于体积的方法忽略的关键曲率特征集成到深度神经网络中,从而实现高精度和高效率。具体而言,我们首先训练一个粗略的解剖分割模型,重点关注高对比度组织类型,即白质 (WM)、灰质 (GM) 和皮层下区域。接下来,我们使用 WM/GM 接口重建皮质表面,并计算表面上每个顶点的曲率特征。然后将这些曲率特征映射回图像空间,在那里它们与强度特征相结合以训练更精细的皮质分割模型。我们还简化了皮质表面重建和曲率计算的过程,从而提高了框架的整体效率。此外,我们的框架非常灵活,可以将任何神经网络作为其主干。它可以作为即插即用组件来增强任何分割网络的全脑分割结果。在公共 Mindboggle-101 数据集上的实验结果表明,与各种深度学习方法相比,分割性能有所提高,速度相当。
引入的电子传输和定期有序固体中的动力学由内在的量子机械性能,例如电子带结构以及电子,声子和其他准粒子之间的相互作用。Bloch波函数的量子几何形式表现为浆果曲率(反映了Bloch电子的惯性),带状质量,Fermi-liquid Transperties(1),Current-Noise-Noise noise noise noise noise targuin-istics(2),或在平面系统(3)中的超级效果(3),这些数字(3)的数量(3),这些基金会(3),这些基金会(3),这些基金会均具有这些资格。更一般地,Bloch电子的量子几何形状非常重要,因为它为量子力学和材料的电子特性之间的复杂相互作用提供了关键的见解。最近,量子几何形状与光 - 物质相互作用之间的联系已进入舞台,从而提供了对拓扑材料的特殊光电子响应的物理机制的见解(4-8)。然而,Bloch Electrons量子几何形状的动量分辨测量仍然是一个巨大的挑战。在冷原子的背景下引入了一种直接的方法,利用了量子几何形状和光结合相互作用之间的紧密联系,在该环境中,可以直接实现范式模型系统。因为带间过渡偶极基矩阵元素等效于浆果连接(9),所以在谐振单色
本研究提出了一种基于进料前向(预览距离控制)和反馈(LQR,线性二次调节器)控制器的路径跟踪算法,以减少标题角误差和预定义路径和自主车辆之间的横向距离误差。路径跟踪的主要目标是生成控制命令以遵循预定义的路径。通过控制车辆的转向角而导致的轨迹误差和横向距离误差来求解馈线误差和横向距离误差。使用LQR来减少由环境和外部干扰引起的误差。通过使用CARLA模拟器模拟自动驾驶汽车的驾驶环境来验证所提出的算法。使用测试工具证明了安全性和舒适性。这项研究还表明,所提出的算法的跟踪性能超过了其他路径跟踪算法的跟踪性能,例如纯Pursuit和Stanley方法。
突然的容量淡出会对电池应用中的性能和安全性产生重大影响。为了解决可能发生的膝盖引起的担忧,这项工作旨在通过引入对膝盖的新定义及其发作来更好地理解其原因。提出了基于弯曲的膝盖及其发作的基于曲率的鉴定,这依赖于发现降解的初始和最终稳定加速之间的过渡中的明显波动的行为。该方法在两种不同的电池化学分配的实验降解数据上进行了验证,并将其合成降解数据验证,并且也标有文献中最先进的膝盖识别方法。结果表明,当最先进的膝盖识别方法失败时,我们提出的方法可以成功识别膝盖。此外,在膝盖和生命的末期(EOL)之间发现了明显的强度,并且在膝盖发作和EOL之间几乎同样强。由于该方法不需要完整的淡入淡出曲线,因此这可以打开在线膝关节识别以及膝盖和EOL预测。
第二次谐波(2Ω)非线性霍尔效应(NLHE)[1,2]可以通过用基于大的基于晶体的同类产品代替古老的基于界面的设备,从而带来逻辑和能量收获技术的新范式[3]。另一方面,NLHE对费米表面的几何形状非常敏感。nhle可以在鞍点[4]和扁平带的位置提供丰富的信息,并直接探测原子上薄的Chern绝缘子中的拓扑相变[5]。在原子薄量子材料的异质结构中获取有关电子特性的信息至关重要,那里的结构对称性工程和热功能可调的复杂的准粒子带共存。在这项工作中,我们在反转对称性的高质量双层石墨烯(BLG)上进行了实验研究,这是掺杂(n)介电位移的函数(d)和温度(t)。我们的结果揭示了不可预见的外在散射和界面应变诱导的内在浆果曲率偶极子(BCD)的二二,其符号和幅度可以通过N和/或D在BLG的低能带边缘附近调节。远离带边缘,观察到NLHE由外部散射占主导地位。BLG中的第二个谐波产生效率V XX(Y)2Ω /VXXΩ2为〜50 V -1,在所有可伸缩材料中最高。此外,v xx(y)2Ω的符号变化的n -d分散轨迹轨迹在BLG中带走了与拓扑相关的LIFSHITTINTIONS。我们的工作将BLG建立为一个高度可调的平台,以生成NLHE,进而探测双层石墨烯中引人入胜的低能电子结构。
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
摘要 - 作为欧洲主要合作的一部分,重点是研究新开发的用于离子治疗的超导磁铁,Istituto Nazionale di Fisica Nucee(INFN)直接通过超导离子Gantry(SIG)项目参与。在离子疗法中,旋转龙门系统对于更好地保存健康组织至关重要,但是它们通常是巨大且沉重的结构:它们的超导版本会导致更轻,更可行的解决方案。SIG旨在与Centro Nazionale di Adroterapia Oncologica(CNAO)和ConseilEuropéenPour LaRecherchéNucléaire(Cern)合作设计,这是430 Mev/U Carbon Ion Gantry的主要超导磁铁。该项目的主要目的是研究该系统的弯曲偶极子:预计它们的曲率为1.65 m,孔径为80 mm,磁场为4 t,坡道速率高达0.4 t/s和NB-TI线圈。SIG的目标是建造30度示威者,以证明这些磁铁的可行性。该计划是设计cosθ磁铁,但我们目前正在制定替代策略,并在块线圈配置中进行横截面。theseparametersareveryChallenging和Thishissolution -CouldMake实现所需目标更容易。在这项工作中,提出了优化的横截面和一种新型的高曲率块线圈磁体的绕组技术。
serpentine互连(Serpentines)具有不同曲率程度的蛇形(Serpentines),通常设计用于吸收变形并保护脆弱的活性组件影响的设备。弯曲曲线较小的蛇纹石使用传统理论进行了很好的建模,但这高估了弯曲较大的蛇形的可拉伸性(例如,相对误差超过90%)。在这里提出的是一种新型的理论模型,其中非buck蛇蛇纹石的特征是大型曲面束。得出分析溶液,并据报道系统的实验和数值模拟来验证准确性并研究几何依赖性。发现(i)无量纲的几何参数调节了蛇纹石的兼容力学,(ii)有一定的弧形角可以产生异常的可伸缩性(即归一化的可伸缩性小于统一性),(iii)可以通过两个数量级和五个数量级来增强灵活性和可伸缩性。这项工作是一种构造具有较大曲率的最佳蛇纹石丝带的新方法。
摘要:随着空中交通的增加,更好地管理和组织空中交通对于提高交通安全和空域容量至关重要。因此,需要对更复杂、更灵活的飞机轨迹进行临时描述,以允许高交通密度并限制环境影响。该方法包括通过拼接多条贝塞尔曲线从预先存在的控制点生成平滑的 4D 路径,同时确保接头处的 G2 连续性。此外,由于控制点和拟议轨迹之间的欧几里得距离由轨迹的最佳重塑控制,因此需要考虑轨迹的曲率-速度-负载因子之间的权衡。生成的轨迹旨在补充常规飞行计划,帮助解决空中交通冲突并通过更好的时间安排提高空中运力。Matlab 模拟证实了该方法的可行性,当为重塑算法定义距离范围时,显示出有希望的结果。
近年来,人们发现了由电子自旋自由度与新出现的几何和拓扑效应相互作用而产生的令人着迷的新型凝聚态现象。[1,2] 其中最突出的是贝里曲率 Ω 的概念,它源于电子波包穿过闭合环路时积累的几何相。[3,4] 在晶体固体中,这种贝里曲率可以解释为作用于运动电子的有效磁场,因此在霍尔输运实验中表现突出。[1] 例如,其积分在动量空间的量化,一种称为能带拓扑的现象,导致量化电荷和自旋霍尔效应。[5–8] 另一方面,磁性材料表现出丰富的实空间和动量空间贝里曲率表现。[9,10]