通过能量传输进行电力分配 - 能量传输将实现与地球上类似的集中发电和分配。通过能量传输,电力可以传输到所需位置,而不必在每个位置建立电力系统和/或必须在长距离和极具挑战性的环境中铺设有线连接。尽管由于传输会损失一些能量,但能量传输可以弥补损失,因为它省去了笨重、昂贵的电缆成本以及发射和降落大型结构的成本。此外,能量传输系统的电力接收器可以在可用时收集太阳能,并根据需要在较冷的地方提供热能。以下文档详细介绍了 DragonSCALES 如何完美适用于能量传输系统:太空太阳能白皮书。
加拿大月球探索加速器计划 (LEAP) 探测车任务 (LRM):探索、收集、克服和启发。CE. Morisset 1、M. Picard 1 和 F. Moroso 1,1 加拿大航天局,6767 Route de l'Aéroport,St. Hubert,QC,J3Y 8Y9,加拿大(caroline-emmanuelle.morisset@asc-csa.gc.ca、martin.picard@asc- csa.gc.ca、franco.moroso@asc-csa.gc.ca)。简介:2019 年,加拿大政府宣布了一项新的月球探索加速器计划 (LEAP),将在五年内投资 1.5 亿美元。其目的是通过在月球轨道、月球表面或更远的深空提供技术开发、科学和任务机会,扩大加拿大的太空部门,特别是中小型企业,并为未来的探索任务做好准备。月球车任务(LRM)是 LEAP 的一部分,旨在开发与月球机动系统和月球表面科学研究相关的空间技术。LRM 的主要重点将主要是用作加拿大工业和学术界未来月球车任务能力的前馈演示,此外还将进行机会性科学研究和促进公众参与。任务摘要:该任务将包括在未来 5 年内将一个 30 公斤级的月球车(包括有效载荷)着陆在月球南极,以展示关键技术并完成有意义的月球科学研究。将容纳至少两个科学有效载荷:一个加拿大的,一个美国的。科学目标将与一个或所有 LEAP 科学主题保持一致:(1)了解你的环境; (2) 资源勘探;(3) 宇航员的安全和健康。该探测器将通过商业月球有效载荷服务 (CLPS) 计划与美国国家航空航天局合作运送到月球表面。
国际空间站的长期合作伙伴渴望与 NASA 一起进入月球轨道。加拿大航天局 (CSA) 已承诺为 Gateway 提供先进的机器人技术,而欧洲航天局 (ESA) 计划提供国际居住舱 (IHab) 和 ESPRIT 模块,后者将提供额外的通信功能、用于部署科学有效载荷和立方体卫星的科学气闸舱以及 Gateway 的燃料补给。日本宇宙航空研究开发机构 (JAXA) 计划提供居住舱组件和后勤补给。俄罗斯航天局 (Roscosmos) 也表示有兴趣在 Gateway 上进行合作。
• NASA 中心:MSFC、LaRC • OGA:AF 土木工程中心、空军特种作战司令部 (AFWERX)、国防创新部门(讨论中)、德克萨斯空军国民警卫队、美国空军 • 学术界:克拉克森大学、德雷克州立大学、爱荷华州立大学、密西西比州立大学、宾夕法尼亚州立大学、辛特格莱斯卡大学、阿拉巴马大学亨茨维尔分校、密西西比大学、田纳西大学诺克斯维尔分校 • 行业:Blue Origin LLC、Holly Shulman 博士、ICON Technology、Jacobs 太空探索集团
•将年度战略分析周期(SAC)调整为最终在年度建筑概念评论(ACR)中•将技术和合作伙伴的演变纳入体系结构计划中•发布和更新阐明建筑的产品,包括建筑定义文档(ADD)
首字母缩略词 .cvs Excel codex ⁰ 度 < 小于 % 百分比 ABC Artemis 大本营 ACES 学院颜色编码系统 ANOVA 方差分析 CEL 概念探索实验室 cm 厘米 conops 作战概念 deg 度 DEM 数字环境模型 DOUG 动态机载无处不在的图形 DRATS 沙漠研究和技术研究 DSN 深空网络 DTE 直接对地 EDGE 探索图形 EHP 美国宇航局的舱外活动和人类地面机动计划 ESDMD 探索系统发展任务理事会 EVA 舱外活动 F ANOVA F 值 FOD 异物碎片 FOV 视场 fps 每秒帧数 GUNNS 通用节点网络求解器软件 HAB 栖息地 HDR 高数据速率 HITL 人在回路 hh:mm:ss 小时、分钟、秒 IES 照明工程学会 IMU 惯性测量单元 ISRU 现场资源利用单元 JEOD 约翰逊航天中心工程轨道动力学集团 JSC 约翰逊航天中心 kg 千克 km 公里 kph 公里每小时 千瓦 千瓦时 千瓦每小时 激光雷达 光增强探测与测距
Artemis 计划包含一系列探索和科学任务。Artemis 不是传统意义上的 NASA“计划”,没有统一的领导和资金。相反,它是跨任务、资金线、理事会和合作伙伴关系的统一目标的广泛表达。Artemis 计划由拥有广泛商业和国际合作伙伴关系的 NASA 牵头,“将在月球上建立可持续的存在,为火星任务做准备”。2 Artemis 计划将包括月球轨道和月球表面的载人作业以及这些区域的无人机器人作业。作为 Artemis 计划的一部分,NASA 牵头的主要计划包括 Gateway、载人着陆系统 (HLS)、猎户座、太空发射系统 (SLS)、商业月球有效载荷服务 (CLPS)、舱外活动 (EVA) 和人类表面机动性 (HSM) 计划以及月球基地。每个计划都涉及商业和国际捐助。国际合作伙伴主导的行动可能包括欧洲大型物流着陆器 (EL3)、加压和非加压探测车、额外的机器人地面任务以及对地面栖息地的贡献。3,4,5,6 NASA 及其合作伙伴还在考虑旨在确保行动可持续性的其他行动,例如现场资源利用 (ISRU) 和支持行动的技术能力,包括电力、通信和着陆基础设施。这些要素共同构成了阿尔忒弥斯计划——这是人类有史以来最雄心勃勃的太空探索计划。
出版者:公益财团法人激光技术研究所 主编:谷口诚二 邮编:550-0004 大阪市西区靱本町 1-8-4 大阪科学技术中心大楼 4 楼 电话:(06) 6443-6311 传真:(06) 6443-6313 http://www.ilt.or.jp
月球陨石坑观测和传感卫星 (LCROSS) 任务发现的数百万吨冰水被认为是月球上最宝贵的资源。从月球风化层中提取这些水冰需要非常高的热能输入,相反,在近真空环境中捕获这些水蒸气也需要很大的冷却能力。因此,有必要为未来由放射性同位素驱动的月球冰采矿车开发专用的热管理系统 (TMS)。根据 SBIR 第一阶段计划,Advanced Cooling Technologies, Inc (ACT) 与 Honeybee Robotics (HBR) 合作开发了一种热管理系统,该系统可以战略性地利用核动力源的废热来升华月球冰土中的水蒸气,并使用月球环境温度作为散热器来重新冻结冷阱容器内的升华蒸气。这样,就可以在降低系统质量和占地面积的情况下,最大限度地减少冰提取和蒸汽收集所需的电能。进行了初步权衡研究,设计了 TMS 的多个热组件,包括基于废热的热芯和热管散热器冷阱罐。开发并测试了概念验证原型。设计了一个可能满足 NASA 采矿目标的初步全尺寸系统,并估算了采矿效率、系统质量/体积和功耗(电能和热能)。
这项工作介绍了月球储量标准的当前开发(LORS101)。这些标准旨在为月球资源探险家,矿工,投资者以及对月球资源(Mineral and volales)QuanɵɵEs的任何相关方提供一致的指南,对月球资源项目的评估,并报告全面的分类框架中的结果。LORS-101分类框架考虑地质不确定性,项目和技术成熟度,以及社会上的框架,以及社会上的框架和Lors-Cal和Lors-101,还包括SRU或原位资源的词汇表或现场资源uɵlisaɵon(ISRU),这是对月球,Mars和其他机构的使用,或者在Sere中使用的,或者在Sere中使用的是,也可以在Sere和其他机构中使用,并在Sere中使用,该系统是在Sere中使用的。目前在石油和天然气和采矿业中使用的定义。SRU技术将为人类提供进一步探索的空间,而对于所有SRU技术阶段都是必不可少的。关键挑战之一是SRU的独特跨学科性质;它集成了空间系统,机器人,材料处理和益处,以及化学过程工程。这是对月球或行星地质学的知识所支持的,包括矿物学,物理特征和当地材料的可变性。以一种协调的方式将如此多样化的领域结合起来,需要使用一个通用框架,该框架将使歌剧进行整合和技术的比较,并将定义全球术语在所有领域中使用。在sruacɵviɵes之前需要解决的重要项目之一是Esɵmaɵon和公共记录的标准的范围;空间探索结果,空间资源评估和空间储备。