英国研究人员卡顿(1)在1875年设法测量了兔子和猴子大脑中的自发电活动,1924年,德国神经精神病学家汉斯·伯格(Hans Berger)首次通过人头皮肤获得了贝伊(Bey)的电记录。汉斯·伯杰(Hans Berger)于1929年发表了这项研究(2)。Hans Berger在第一批记录中定义了Alpha(8-13 Hz)和Beta(15-30 Hz)的波,并将此电气记录称为“脑电图”(EEG)。大脑中的神经细胞与电连接相互通信,并且在获取细胞记录时,可以测量突触后的抑制剂,退出器突触电位后出口并最终导致动作电位。当有效电极连接到头骨上并作为第二电极中的参考电极连接时,测量该电极下神经细胞的所有电气集体活性。这些记录在大脑头皮上拍摄的记录是不正确的复杂信号。这些信号取决于人类的瞬时大脑活动,时间,频率和拓扑差异。汉斯·伯格(Hans Berger)表明,即使在第一次记录期间,枕骨闭嘴,大脑的视觉区域,阿尔法波也有所增加。在Alpha和Beta波之后,1936年,Walter(3)定义了Delta(0.5-3.5 Hz)和TETA(4-7 Hz)波,所有频带在1938年被命名为Gamma波(4)。今天,在许多书籍中,这些频带已成为任务说明
摘要为了揭示神经性疼痛经历的复杂性,研究人员试图使用脑电图(EEG)和皮肤电导(SC)鉴定可靠的疼痛特征(生物标志物)。尽管如此,它们用作设计个性化疗法的临床帮助仍然很少,并且患者处方常见和效率低下的止痛药。为了满足这种需求,新型的非药理干预措施,例如经皮神经刺激(TENS),通过神经调节和虚拟现实(VR)激活外周痛缓解,以调节患者的注意力。但是,所有当前治疗方法都遭受患者自我报告的疼痛强度的固有偏见,具体取决于其倾向和耐受性,以及未考虑疼痛发作的时间的未明确,预定义的会话时间表。在这里,我们显示了一个脑部计算机界面(BCI),该界面检测到来自EEG的神经性疼痛的实时神经生理学特征,并因此触发了结合TENS和VR的多感官干预。验证多感官干预有效减轻了实验性诱发的疼痛后,通过电力诱导疼痛,用13个健康受试者对BCI进行了测试,并在实时解码疼痛中显示了82%的回忆。然后用八名在线疼痛精度达到75%的神经性患者进行了验证,因此释放了在神经性患者疼痛感知中引起显着降低(50%NPSI评分)的干预措施。这为使用完全便携式技术的个性化,数据驱动的疼痛疗法铺平了道路。我们的结果证明了从客观神经生理学信号中实时疼痛检测的可行性,以及VR和TEN的触发组合的有效性以减轻神经性疼痛。
1。斯坦福大学神经外科系2。Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。 3。 美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4. VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。 工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。3。美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4.VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学工程学院,布朗大学,美国普罗维登斯,美国,美国6。Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学
摘要。基于心理任务的大脑计算机界面(MT-BCIS)允许其用户仅通过使用通过心理任务产生的大脑信号来与外部设备进行交互。虽然MT-BCI有望用于许多应用,但由于缺乏可靠性,它们仍然几乎没有使用外部实验室。MT-BCI要求其用户发展自我调节的特定大脑信号的能力。但是,控制BCI的人类学习过程仍然相对较少了解,以及如何最佳地训练这种能力。尽管他们承诺和成就,但传统的培训计划已被证明是最佳的,并且可以进一步改善。为了优化用户培训并提高BCI绩效,应考虑人为因素。应采用跨学科的方法,以为学习者提供适当和/或自适应培训。在本文中,我们概述了MT -BCI用户培训的现有方法 - 尤其是在环境,说明,反馈和练习方面。我们提出了这些培训方法的分类和分类法,提供有关如何选择最佳方法并确定开放挑战和观点以进一步改善MT-BCI用户培训的指南。
随着深度学习的快速发展,注意机制在脑电图(EEG)信号分析中变得必不可少,从而显着增强了大脑计算机界面(BCI)应用。本文对传统和变压器的注意机制,其嵌入策略及其在基于EEG的BCI中的应用进行了全面综述,并特别强调了多模式数据融合。通过捕获跨时间,频率和空间通道的脑电图变化,注意机制可改善特征提取,表示学习和模型鲁棒性。这些方法可以广泛地分为传统的注意机制,该机制通常与卷积和经常性网络集成,以及基于变压器的多头自我注意力,在捕获长期依赖性方面表现出色。除了单模式分析之外,注意机制还增强了多模式的脑电图应用,从而促进了脑电图与其他生理或感觉数据之间的有效融合。最后,我们讨论了基于注意力的脑电图建模中的现有挑战和新兴趋势,并强调了推进BCI技术的未来方向。本综述旨在为寻求利用注意力机制的研究人员提供宝贵的见解,以改善脑电图的解释和应用。
摘要。大脑计算机界面(BCIS)是使人仅使用神经活动与机器进行交互的系统。这种相互作用对于用户而言可能是不直接的,因此培训方法是为了增加一个人的理解,信心和动机,这将在并行提高系统性能。要清楚地解决BCI用户培训协议设计中的当前问题,在这里分为介绍期和BCI相互作用期。首先,必须将介绍期(BCI交互之前)视为与用户培训的BCI交互同样重要。为了支持这一主张,对论文的审查表明,BCI绩效可以取决于此类入门期内提出的方法。为了使其设计标准化,人类计算机相互作用(HCI)的文献已调整为BCI上下文。第二,在用户BCI交互期间,接口可以采用大量的形式(2D,3D,大小,颜色等)和模态(视觉,听觉或触觉等)无需遵循任何设计标准或准则。也就是说,探索对神经活动的感知阶段的研究表明,可以从对某些物体的简单观察结果触发运动神经元,并取决于对象的属性(大小,位置等)神经反应可能差异很大。令人惊讶的是,在BCI背景下未研究感知阶段的影响。对BCI的介绍都不一致,以及可变的界面设计使得繁殖实验很困难,预测其结果并比较它们之间的结果。为了解决这些问题,提出了用于用户培训的协议设计标准化。
在中枢神经系统病变后,为患有运动障碍的患者开发可靠的辅助设备仍然是非侵入性脑部计算机界面(BCIS)领域的主要挑战。这些方法主要由脑电图造影,并依靠高级信号处理和机器学习方法来提取运动活动的神经相关性。但是,尽管巨大的努力仍在进行,但它们作为有效临床工具的价值仍然有限。我们主张,一个相当被忽视的研究途径在于努力质疑传统上针对非侵入性运动BCIS的神经生理标记。我们提出了一种替代方法,该方法是基于非侵入性神经生理学的最新进展,特定主题的特征特征特征提取了通过(可能是磁脑摄影术 - 优化)的磁磁磁性术记录的感应活动爆发。这条道路有望克服现有限制的显着比例,并可以促进在康复协议中更广泛地采用在线BCI。
摘要 - 随着开放科学的出现,越来越多的研究人员正在共享他们的数据集和处理方法。但并非所有领域都关注,并且有些仍然缺乏开放的数据库,这些数据库可以更快,更相关的研究,更重要的是赞成结果的可复制性和可重复性。对于脑部计算机界面的领域尤其如此,尤其是在被动脑机接口的相对新领域。本文概述了基于脑电图的被动脑机接口应用程序的当前可用数据集。详细介绍了其主要特征,包括参与者的数量,任务,电极设置和电极位置信息。缺乏被突出显示和讨论,并为将来的研究提供了建议。
摘要 - 目的:选择性听觉注意解码(AAD)算法处理大脑数据(例如脑电图),以解码一个人参加的多个竞争声源。例子是神经ste的助听器或通过脑部计算机界面(BCI)进行通信。最近,已经证明可以在无监督的环境中基于刺激重建的刺激重建来训练此类AAD解码器,在这种情况下,没有关于参加哪种声音源的地面真相。在许多实际情况下,这种地面真相标签不存在,因此很难量化解码器的准确性。在本文中,我们旨在开发一种完全无监督的算法,以估算竞争性说话者聆听任务期间基于相关的AAD算法的准确性。方法:我们通过将AAD决策系统建模为具有添加剂白色高斯噪声的二进制相移键通道来使用数字通信原理。结果:我们表明,针对不同量的培训和估计数据以及决策窗口长度,提出的无监督性能估计技术可以准确地确定AAD准确性。此外,由于不同的应用需要不同的目标准确性,因此我们的方法可以估计任何给定目标准确性所需的训练量最小。结论:我们提出的估计技术准确地预测了基于相关的AAD算法的性能,而无需访问地面图标签。在BCIS中,它可以支持强大的沟通范式,并提供护理人员的准确反馈。显着性:在神经启动的助听器中,我们方法提供的准确性估计值可以支持时间自适应解码,动态增益控制和神经反馈。
一般权利一般权利所有珍珠中的内容均受版权法保护。根据发布者政策提供作者手稿。请仅使用项目记录或文档中提供的详细信息引用发布的版本。在没有公开许可证的情况下(例如Creative Commons),应从出版商或作者那里寻求进一步重用内容的许可。取消策略取消政策,如果您认为本文档违反版权,请联系提供详细信息的图书馆,我们将立即删除对工作的访问并调查您的索赔。遵循以下工作:https://pearl.plymouth.ac.uk/ada-research