随着深度学习的快速发展,注意机制在脑电图(EEG)信号分析中变得必不可少,从而显着增强了大脑计算机界面(BCI)应用。本文对传统和变压器的注意机制,其嵌入策略及其在基于EEG的BCI中的应用进行了全面综述,并特别强调了多模式数据融合。通过捕获跨时间,频率和空间通道的脑电图变化,注意机制可改善特征提取,表示学习和模型鲁棒性。这些方法可以广泛地分为传统的注意机制,该机制通常与卷积和经常性网络集成,以及基于变压器的多头自我注意力,在捕获长期依赖性方面表现出色。除了单模式分析之外,注意机制还增强了多模式的脑电图应用,从而促进了脑电图与其他生理或感觉数据之间的有效融合。最后,我们讨论了基于注意力的脑电图建模中的现有挑战和新兴趋势,并强调了推进BCI技术的未来方向。本综述旨在为寻求利用注意力机制的研究人员提供宝贵的见解,以改善脑电图的解释和应用。
主要关键词