1956 年 9 月 15 日,第 501 战术导弹联队 1944 年 6 月 1 日,第 501 轰炸机大队成立,并于 1945 年 4 月部署到关岛,在那里执行了 15 次作战任务,并向盟军战俘空投了食物和补给。 1956 年 9 月 15 日,第 501 战术导弹联队成立,成为美国空军第一个战术导弹联队,1958 年 6 月 18 日解散。1982 年 7 月 1 日,该联队重新启用,更名为第 501 战术导弹联队,但于 1991 年 5 月 31 日解散。后来,该联队被指定为第 501 战斗支援联队,并于 2005 年 3 月 22 日重新启用。第 501 战斗支援联队仍然是美国空军唯一的战斗支援联队,它通过遍布英国、挪威和塞浦路斯的十个地理位置分散的基地,延续了其在全球范围内执行战斗任务和开展外交活动的悠久传统。
5 飞行调查................................................................................................................86 5.1 试飞描述...............................................................................................................86 5.2 传感器模块的初始连接...............................................................................................88 5.2.1 结果.........................................................................................................................................88 5.2.2 讨论.........................................................................................................................................89 5.3 稳态结果.........................................................................................................................93 5.3.1 压力分布.........................................................................................................................93 5.3.2 稳态力系数....................................................................................................................96 5.4 稳态力和力矩系数的讨论.........................................................................................99 5.4.1 流动分离.............................................................................................................................100 5.5 短周期俯仰振荡.....................................................................................................106 5.5.1 结果.............................................................................................................................106 5.5.2 讨论.............................................................................................................................108 5.6结论................................................................................................................112
飞机是一种结构复杂,但却是一种非常高效的人造飞行器。飞机通常由机翼、机身、尾翼和控制面等基本部件组成。这些主要部分的承重构件,即承受主要力的构件,称为机身。支架是连接器类型的元件,广泛用作结构支撑,用于承载发动机、机翼和起落架连杆中使用的液压和电线。支架故障可能导致整个结构的灾难性故障。有限元分析研究和实验数据有助于设计人员保护结构免遭灾难性故障。我们的项目考虑使用 I 型支架和 Z 型支架来分析在适当的激励力下可能引起共振响应的应力和固有频率。
Daeil Jo 和 Yongjin (James) Kwon 工业工程,亚洲大学,韩国水原 电子邮件:j11129@naver.com,yk73@ajou.ac.kr 摘要 —随着公众对无人机兴趣的增加,无人机正在成为第四次工业革命时代的重要技术领域之一。对于无人机来说,固定翼类型是有利的,因为它比多旋翼类型具有更长的飞行时间,并且速度更快。然而,它需要一个单独的、漫长的、无障碍物的着陆区,这在城市地区很难找到。此外,固定翼型无人机不容易安全着陆。正因为如此,对垂直起降型无人机的需求正在上升。本研究的目的是设计和开发一种能够垂直着陆和起飞的垂直起降飞机,并在垂直、水平和过渡飞行过程中具有适当的推力和升力。我们制定了规范化的无人机开发流程,为开发过程提供理论指导。为了确定垂直起降飞机的气动特性,我们采用了 3D CAD 和 CAE 方法,可以模拟风洞试验以获得最佳气动效率。使用开发的流程,我们确定了构成无人机的内部模块的标准,并且可以考虑适当的重心来组装机身。我们进行了 SW 设置以进行飞行调整,并能够相应地进行飞行测试。在飞行体验中
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。
1 引言 近年来复合材料被广泛应用于运输飞机的制造。复合材料在商用运输中的首次重大应用是空客 1983 年为 A300/310 飞机采用的全复合材料方向舵。1985 年,空客也在同样的型号中引入了复合材料垂直尾翼。随着 A300/310 的成功,空客为 A320 飞机引入了全复合材料尾翼结构。A320 飞机的复合材料重量占结构重量的 15%。1970 年代末,NASA 和波音、洛克希德、MD 等主要机身公司启动了 ACEE 计划。该计划的主要目标是通过使用复合材料来减轻机身结构重量。在 ACEE 计划中,B737 的尾翼被复合材料取代,MD 为商用运输飞机开发了全复合材料机翼,洛克希德为 L1011 设计了新的复合材料垂直尾翼和副翼。在美国,复合材料在民航客机上应用最为广泛的是B777,复合材料结构占B777结构重量的10%,B777的尾翼、地板梁、襟翼和外副翼均采用复合材料制造。空客和波音最近研制的民航客机的机身和机翼结构也采用了复合材料,A350和B787的复合材料重量比将超过50%,两款飞机的翼盒和机身结构均采用了复合材料。
执行总结在过去20年中,民用空气巡逻队在紧急服务,航空航天教育和Cadet计划区域内的任务活动迅速扩大和发展。这一进展的一些例子包括增加参与国土安全任务;在墨西哥,波多黎各和巴哈马的灾难中扩展了水上任务;引入无人飞机系统以进行紧急服务和航空航天教育活动;通过机翼计划,Cadet初级飞行训练;并认可空军部门作为全部队的成员。但是,CAP操作的规模,范围和复杂性的增加为组织及其成员带来了传统和新兴危害的额外风险。对操作环境的自然和人类引起的变化也引起了必须积极管理的风险,例如与全球变暖,病毒大流行病相关的极端天气事件以及在公共场合中增加的大规模暴力行为。确保CAP成员的身体以及心理,健康和安全,保护CAP资产以及在整个组织中保持弹性必须是当前组织环境中的优先事项。但是,不再应仅将健康和安全委托给分配给这些角色的民事空气巡逻队成员,并通过积极的基于系统的方法来解决,而不是组织各个级别的个人的反应性努力。执行该战略计划将使FLWG能够有效地解决其运营和活动中的风险,同时通过CAPR 160-1内空气巡逻安全计划中讨论的安全管理系统(SMS)概念提高整体弹性。
http://gssrr.org/index.php?journal=JournalOfBasicAndApplied -------------------------------- -------------------------------------------------- --------------------------------------------------
中等雷诺数下的薄翼型动态失速通常与靠近前缘的小层流分离气泡的突然破裂有关。鉴于层流分离气泡对外部扰动的强烈敏感性,使用直接数值模拟研究了在不同水平的低振幅自由流扰动下 NACA0009 翼型截面上动态失速的发生。对于前缘湍流强度 Tu = 0 .02%,流动与文献中的干净流入模拟几乎没有区别。对于 Tu = 0 .05%,发现破裂过程不太平稳,并且在动态失速涡流形成之前观察到层流分离气泡中强烈的相干涡流脱落。非线性模拟与瞬态线性稳定性分析相辅相成,该分析使用最优时间相关 (OTD) 框架的空间局部公式对破裂分离泡中层流剪切层的时间相关演化进行分析,其中非线性轨迹瞬时切线空间中最不稳定的部分随时间的变化被跟踪。得到的模式揭示了两种状态之间的间歇性切换。分离剪切层上的开尔文-亥姆霍兹滚转快速增长,分离泡过渡部分的二次不稳定性复杂化。后者的出现与线性子空间内瞬时增长率的大幅飙升以及非线性基流的更快转变有关。这些强烈的增长峰值与随后从层流分离泡中脱落的能量涡流密切相关。