本文介绍了欧盟资助的研究项目 AGILE(2015 – 2018)中针对整体飞机设计的多学科设计和优化 (MDO) 领域的研究活动中所进行的方法研究。在 AGILE 项目中,来自欧洲、加拿大和俄罗斯的 19 个工业、研究和学术合作伙伴组成的团队正在共同开发下一代 MDO 环境,旨在大幅降低飞机开发成本和上市时间,从而生产出更便宜、更环保的飞机。本文介绍了 AGILE 项目结构,并描述了第一年取得的成果,这些成果催生了参考分布式 MDO 系统。然后,重点介绍了第二年研究的各种新型优化技术,所有这些技术都旨在简化复杂工作流程的优化,这些工作流程的特点是学科相互依赖性高,设计变量多,涉及多层次流程和多合作伙伴协作工程项目。本文针对传统飞机引入并验证了三种优化策略。首先,在机翼设计问题上使用基于纳什博弈和遗传算法的多目标技术。然后对发动机舱设计进行深入研究,使用基于代理的优化器来解决单目标问题。最后采用稳健方法来研究参数不确定性对发动机舱设计过程的影响。这些新功能
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
这一原理通过管道内流动的流体压力变化来体现,管道内径减小,类似于文丘里管。在逐渐变窄的管道的宽部分,流体以较低的速度流动,产生较高的压力。当管道变窄时,它仍然包含相同量的流体;但由于通道收缩,流体以更高的速度流动,产生较低的压力。这一原理也适用于飞机机翼,因为它的设计和构造具有曲线或拱度。[图 1-9] 当空气沿机翼上表面流动时,它比沿机翼下表面流动的气流行进的距离更大。因此,根据伯努利原理,机翼上方的压力小于机翼下方的压力,从而在低压方向上对机翼上曲面产生升力。
• 福克 D-8(第一次世界大战中最后一次正式击落的飞机) - D8 性能出色,但在大角度俯冲时机翼会损坏 - 早期的单翼飞机扭转刚度不足,导致: • 机翼颤动、机翼副翼颤动 • 副翼效率降低 - 解决方案:增加扭转刚度、质量平衡
摘要:飞机的安全监测与跟踪越来越重要,在气动载荷作用下,飞机机翼会产生较大的弯曲和扭转变形,严重影响飞机的安全。飞机机翼载荷的变化直接影响飞机基线的地面观测性能,要补偿机翼变形引起的基线变形,需要准确获取机翼外形的变形量。传统的飞机机翼外形测量方法不能同时满足体积小、重量轻、成本低、抗电磁干扰、适应复杂环境的要求,而用于飞机机翼外形测量的光纤传感技术已逐渐被证明是一种具有许多优良特性的实时、在线动态测量方法。本文综述了光纤光栅传感器(FBG)的原理技术特点和胶接技术,对比分析了其他测量方法的优缺点,并着重分析了FBG传感技术在飞机机翼外形测量中的应用现状。最后对提高基于FBG传感技术的飞机机翼外形测量精度提出了综合建议。
通过实验室、风洞和飞行测试研究了充气机翼的性能。研究了三种翼型,一种是充气式刚性机翼,一种是充气式聚氨酯机翼,一种是带聚氨酯囊的织物机翼约束装置。本研究开发和使用的充气机翼具有独特的外翼型轮廓。翼型表面由一系列弦向“凸起”组成。凸起或“表面扰动”对机翼性能的影响令人担忧,并通过烟线流动可视化进行了研究。进行了空气动力学测量和预测,以确定机翼在不同弦向雷诺数和攻角下的性能。研究发现,充气式挡板会将湍流引入自由流边界层,从而延迟分离并提高性能。
答案:吊架是一种附着在飞机上的装置,用于在飞行的所有阶段将油箱固定到飞机上。下图中的示例清楚地定义了机翼、吊架和油箱。吊架的设计由每个团队决定。吊架可以有多个组件或零件,只要它符合规则中的所有要求即可。吊架没有最小尺寸限制,只要机翼和油箱瓶之间有明显的间隙,并且油箱瓶在吊架和机翼外部与吊架的连接。飞机机翼上可能有固定吊架的永久性装置,但这些装置必须在内部,不能位于机翼周围的自由气流中。
本文重点介绍集成在新型变形机翼应用的执行机构中的电动微型执行器的建模、仿真和控制。变形机翼是现有区域飞机机翼的一部分,其内部由翼梁、纵梁和肋条组成,结构刚度与真实飞机的刚度相似。机翼的上表面是柔性蒙皮,由复合材料制成,并经过优化以满足变形机翼项目要求。此外,机翼上还附有一个可控刚性副翼。执行机构的既定架构使用四个类似的微型执行器,固定在机翼内部并直接驱动机翼的柔性上表面。执行器是内部设计的,因为市场上没有可以直接安装在我们的变形机翼模型内的执行器。它由一个无刷直流 (BLDC) 电机、一个变速箱和一个螺旋桨组成,用于推动和拉动机翼的柔性上表面。电动机
1 概述 飞机操作说明 (AOI) 包含多个部分以符合 ASTM 标准。通用航空制造商协会 (GAMA) 格式已被采用,并在适当情况下用于此重量转移控制超轻型飞机。AOI 包含 XT 912 底座与 Streak 3 机翼 Cruze 机翼、Merlin 或 SST 机翼相结合的信息。所有相关信息均针对任一配置提供,但请注意,除非另有说明,否则 SST 的数据符合 Streak 3。操作员必须确保针对特定机翼底座组合引用正确的数据。1.1 简介 此超轻型飞机系列是根据 ASTM 名称 2317-04 重量转移控制飞机设计标准规范设计和制造的。