航空业正面临越来越大的压力,需要通过长期战略来减少排放,以满足不断增长的飞行乘客数量。目前运行的飞机通常是在设计时将机身与推进系统分开考虑的。这样一来,传统的航空发动机架构在推进效率方面已接近极限,而技术进步带来的收益却越来越少。一种有前途的替代架构可以提高下一代商用飞机的整体性能,它依赖于边界层吸入 (BLI)。这项技术将机身与战略性定位的推进系统在空气动力学上耦合,以有目的地吸入机身的边界层流。尽管如此,对于 BLI 效益的解释和量化仍缺乏共识。这主要是因为传统的性能核算方法在强气动耦合的情况下失效。随后,定义适当的性能指标以提供一致测量和潜在效益比较是一项重大挑战。本评论研究了用于评估 BLI 性能的各种会计方法和指标。这些内容在数值和实验模型的背景下进行了讨论和批评。从数值上讲,几何、空气动力学和推进模型按保真度顺序排序,同时使用大量方法进行流动特征识别,从而实现对 BLI 的现象学理解。然后特别关注具有不同设置、方法和相关限制和不确定性的实验 BLI 模型。最后,参考其相关的设计探索和优化研究,对众多非常规 BLI 飞机概念进行了分类、比较和批评。
民航是连接世界和支持全球经济增长的重要交通网络。为了在实现环境目标的同时保持这些优势,下一代飞机必须大幅减少对气候的影响。氢动力飞机有可能在现有航线上不排放碳并减少或消除其他排放。本文是一份全面的氢动力飞机指南,解释了基本物理原理并回顾了当前的技术。我们讨论了这些技术对飞机设计、成本、认证和环境的影响。从长远来看,氢动力飞机似乎是当今煤油动力飞机最引人注目的替代品。使用氢气还可以实现燃料电池和超导电子等新技术,这可能导致使用煤油无法实现的飞机概念。氢动力飞机在技术上是可行的,但需要大量的研究和开发。轻型液氢罐及其与机身的集成是关键技术之一。燃料电池可以消除飞行中的排放,但必须变得更轻、更强大、更耐用,才能使大型燃料电池驱动的运输飞机成为可能。氢动力涡轮风扇发动机已经具备了这些理想的特性,但会产生一些排放,尽管其危害性远低于煤油涡轮风扇发动机。除了机身和推进技术外,氢动力飞机的可行性还取决于低成本的绿色氢气生产,而这需要对能源基础设施进行大量投资。
塞维利亚,2022 年 1 月 26 日——空中客车 C295 飞行试验台 2 (FTB2) 在塞维利亚总装线上成功完成首飞。该飞机现已开始飞行活动,旨在测试新的半变形机翼、新的经济型飞行控制系统以及嵌入飞机机身的卫星通信天线。空中客车防务与航天工程执行副总裁 Francisco Javier Sánchez Segura 表示:“C295 FTB2 的首飞是一个关键里程碑,代表着该项目向前迈出的重要一步,此前该项目已成功整合了新的航空结构、进行了开机和地面测试。几年前,这个项目还只是航空业更可持续未来的一个梦想。今天,我们已进入最后阶段,终于让它飞起来了。”飞行试验台 2 以空客 C295 为基础,是欧洲清洁天空 2 (CS2) 和欧盟地平线 2020 研究与创新计划的飞行演示器,用于测试与 CS2 未来区域多任务飞机相关的技术。改进包括旨在减少噪音、二氧化碳和氮氧化物排放的新材料和技术。将这些技术应用于未来的区域多任务配置后,在 400 海里的典型搜救任务中,二氧化碳排放量可减少 43%,氮氧化物排放量可减少 70%,起飞时的噪音可减少 45%。
摘要 自“沙漠风暴行动”以来,空军的飞机数量、机组人员数量和总体实力均有所减少。军种内部选择和外部影响减少了替换机身的生产,并且可能继续减少未来采购的飞机数量(F-22A、F-35A、KC-46A 和 LRS-B)。尽管美国空军的作战范围横跨空中、太空和网络空间,但其主要使用空中力量来追求国家目标。虽然规模缩小并不一定是坏事,但飞机和机组人员的进一步减少可能会对部队的文化和能力产生一定影响。预测和了解这些影响对于未来的部队规划至关重要,这样不仅可以避免出现一支空心部队,还可以避免一支对其在保卫国家中的作用感到困惑的部队。虽然未来的兵力预测充满不确定性,但本论文试图通过额定兵力结构的预期变化,对 2030 年的空军进行展望。假设相对简单:2010 年的兵力结构小于 1990 年;2030 年的兵力结构将更小。在很大程度上,问题是这意味着什么?虽然未来额定兵力规模可能会减少,但领导层可以通过早期意识和主动参与来减轻对文化的不利影响。为此,本论文将确定可能与预期的飞机和机组人员减少相关的潜在问题,以引发讨论,从而提前意识到这个问题,并希望能够考虑这个问题。
2009 年 12 月 15 日,华盛顿州埃弗里特佩恩机场。波音公司 13,000 多名员工齐聚一堂,见证波音 787 梦想飞机首次飞往西雅图波音机场 [1] 。这是航空业的一个里程碑,因为这是向主要采用复合材料制造的飞机迈出的一大步。四年后,即 2013 年 6 月 14 日,空客 A350 XWB 首次从图卢兹-布拉尼亚克机场起飞。787 梦想飞机和 A350 XWB 的结构主要由复合材料制成。复合材料的好处众所周知;正如 AviationFacts 关于复合材料损伤检查的情况说明书 [2] 所述:“复合材料比铝更轻、更坚固、设计形状更自由。这些优势是如今飞机制造商在飞机中使用更多复合材料的原因。”然而,使用复合材料也有其缺点,例如检测复合材料的损伤并进行修复需要大量劳动力 [2] 。 2014 年 7 月 12 日,埃塞俄比亚航空公司的一架波音 787 梦想飞机在希思罗机场起火。为了使飞机恢复使用,由于无法修复火灾造成的损坏,必须更换机身的一部分。两个月后,飞机重新投入使用。复合材料的一个问题是,外部损坏并不代表内部结构。这在复合材料的修复过程中会造成问题。但是复合材料中发生的损坏是什么呢?
致力于传播材料 TMF 行为领域的最新研究成果。通过疲劳和断裂委员会 E-8 的成员,ASTM 传统上对热疲劳和热机械疲劳有着浓厚的兴趣,从讨论该问题的众多 STP 中可以看出。1968 年,第一篇关于 TMF 的 ASTM 论文出现在 STP 459《高温疲劳》中。Carden 和 Slade 讨论了 Hastelloy X 在应变控制等温和 TMF 条件下的行为。《疲劳测试手册》(STP 566,出版于 1974 年)描述了一种试样热疲劳测试技术以及协和式飞机机身的结构 TMF 测试系统。STP 612,材料和部件的热疲劳(1975)是第一届关于热和热机械疲劳的综合 ASTM 研讨会的论文集。论文主题包括 TMF 测试技术、寿命预测方法以及陶瓷和定向凝固高温合金等先进材料的 TMF 行为。1988 年举行的题为“低周疲劳”(STP 942)的研讨会包含五篇关于热和热机械疲劳的论文。介绍了 TMF 测试技术、变形行为和建模以及微观结构损伤观察。第一个专门用于材料 TMF 的 ASTM STP(也是本卷的前身)是 1991 年材料 TMF 行为研讨会 (STP 1186) 的论文集。几篇论文讨论了环境攻击对承受 TMF 负载的高温合金性能和寿命建模的作用。此外,本 STP 包含两篇讨论金属基复合材料 TMF 的论文,这表明人们对此类材料在高温应用方面的兴趣正在兴起。
镁(以下称“Mg”)合金的比重为1.8以下,仅为轻量化材料铝(以下称“Al”)的三分之二。最近,在薄型笔记本电脑机身中,Mg合金的轻量化价值得到了认可。住友电气工业株式会社镁合金开发部将独有的急速凝固技术*1应用于通用的AZ91D Mg合金*2,制造出具有轻量化、高强度、高耐腐蚀性特点的AZ91板材,并致力于将其实际应用于薄型笔记本电脑机身。最近,受新型冠状病毒感染的肺炎疫情影响,社会环境发生了重大变化,个人和社会规范发生重大转变,包括个人交流和企业运营在内的所有社会活动都正在向数字化和线上化转变。为了普及推动数字化的IoT、AI技术以及加速其应用的第五代移动通信系统(以下简称“5G”),必须完善基础设施。人们期待包括个人和产业在内的社会能够利用这些技术创造新价值、实现社会创新。(1)实现社会创新的一大障碍是基础设施建设时电子设备的发热量。(2)作为重要电子设备和零部件的CPU所使用的半导体集成度不断提高,发热量集中化。预计随着IoT和5G的应用,功耗会增加,局部发热量也会增大。(2)近年来,薄型笔记本电脑、智能手机等电子设备机身的体积和尺寸不断缩小。受这些因素影响,预计发热量将超过电子设备的允许工作范围。电子设备的冷却技术将变得比以往任何时候都更加重要。 (2)减少
普惠 P&W 操作说明 315 前言 本操作说明包含普惠针对安装在空客 A300-600 和 A310 飞机上的 PW4000 系列发动机的操作提供的说明、建议和建议。操作说明中还简要介绍了 PW4000 系列发动机操作所需的发动机系统。未按照本操作说明操作 PW4000 系列发动机可能会导致普惠的服务政策失效。本操作说明旨在支持机身制造商制定适用机身的操作手册。本说明不得以任何方式视为替代或取代适用飞机操作手册中的信息。本文包括型号合格证数据表 (TCDS) 中包含的联邦航空管理局 (FAA) 批准的操作限制。此外,操作说明包含某些不需要 FAA 批准的操作信息。因此,本文档不受 FAA 批准。修订本操作说明会随着 Pratt & Whitney 获得新信息而进行修订。要接收此类修订,您必须在 Pratt & Whitney 的分发列表中。Pratt & Whitney 将仅以 CD-ROM 形式发布修订的操作说明。不再提供纸质副本。所有修订将按顺序编号。所有修订页面的修订材料旁边的左边距中将添加一行。这些操作说明也可在 Pratt & Whitney 在线服务网站 ( http://portal.pw.utc.com ) 上找到。一旦您请求访问在线版本,您将收到修订的电子邮件通知。与这些说明有关的所有问题都可以直接联系:飞行运营经理 Pratt & Whitney C/O 客户服务台 400 Main Street, M/S 131-20 East Hartford, Connecticut 06108 USA 电话:860-565-0140 传真:860-565-5442 电子邮件:HELP24@pw.utc.com 前言 PW4000 A300-600/A310 第 1 页 2008 年 6 月 30 日
让 18 名跳伞者在 12 分钟内到达 12,000 英尺高空,并在他们到达之前着陆,这是其他飞机无法做到的事情。从一小段崎岖的乡村地带运送几吨过磷酸盐是另一回事,但能够同时完成这两件事的飞机也可以成功完成许多其他具有挑战性的任务。很少有农用飞机设计能够存活超过 60 年,而且可能没有一种设计能够像新西兰 Air Part 的 FU24 Fletcher(最初的)那样发展得如此令人印象深刻,尽管它配备了 235 马力的 Continental O-470 动力装置,但它却运送了近一吨过磷酸盐。FU24 独特的轮廓、其内侧机翼部分与停机坪平行以及外侧末端弯曲成显眼的 Jodel 式 8˚ 二面角,对各地的飞机观察者来说都很熟悉。这种类型花了一段时间才赢得飞行员的喜爱,尤其是当 FU24 首次遇到澳大利亚炎热和高海拔条件并遭遇传统的“农业超负荷”时:“它只需要再增加三四百马力,再找一名奥运会举重运动员来驾驶它,”六十年代,一位新西兰人转行成为澳大利亚超级飞行员的飞行员抱怨道。“而且,真正的农业飞行员不信任前轮!” 连续的动力装置变体包括 250、300 和 400 马力的莱康明斯(现在我们取得了一些进展!),最终还有巨大的美国 V-8 卡车发动机,所有这些都充分适应了原始弗莱彻简单而坚固的过度建造结构。一路走来,前轮一直证明自己是正确的,证明它和机身的其他部分一样坚固。但真正的革命是涡轮动力。1967 年,工厂制造的 500 马力 PT6 涡轮螺旋桨发动机首次问世,一年后又推出了两款采用 Garrett 动力的版本,同时,售后市场改装也开始使用 PT6 和 500 马力 Walter M601D 发动机。
腐蚀会对许多工业领域的机械结构造成巨大损害,航空业也不例外。为了在不影响安全性的情况下延长机身的使用寿命,清晰地了解飞机的腐蚀状态 (SoC) 非常重要。因此,开发适合实时监测 SoC 并在结构受到腐蚀损害时发出可靠通知的方法至关重要。迄今为止发布的结果表明,超声波(例如声发射、导波)以及电化学传感器(例如电化学噪声、阻抗谱)适用于监测与飞机相关的腐蚀,但尚未具备应用于商用飞机的技术条件。实现可靠监测系统的一个巨大问题是腐蚀现象与(通常)嘈杂的传感器数据之间的相关性。AICorrSens 项目通过开发基于超声波、电化学和环境传感器以及 AI 算法的多传感器设置来监控 SoC,从而解决了这些问题。应通过使用配备传感器的试样和演示部件进行加速腐蚀测试来生成训练数据。使用 AI 进行后续数据分析,可以克服操作噪声,从而允许当今的腐蚀检测方法在检测、定位、量化和类型化方面实时评估 SoC。该项目的目标是将创建的连续数据流转换为可通过人机界面直观理解的 SoC 分类,包括由测试活动生成的 AI 模型进行的合格腐蚀预测。该项目的结果将提高飞机的安全性和可靠性,并为飞机运营商带来明显的经济效益,因为它允许从定期检查间隔转换为基于条件的维护。资助方:奥地利研究促进署 项目:Take Off, Call 2019 联盟:CEST 电化学表面技术能力中心 (CEST)、林茨约翰内斯开普勒大学 - 结构轻量化设计研究所 (IKL)、克雷姆斯多瑙大学 - 集成传感器系统系 (DISS)、Senzoro GmbH (SENZ)。项目持续时间:2020 年 10 月 - 2023 年 9 月。