本研究的首要目标是探讨天然纤维复合材料在航空结构中的应用潜力,尤其是直升机结构。将使用亚麻纤维复合材料作为环氧预浸料的各种实证研究来实现这一目标。进行并评估结构力学分析试验,包括拉伸、弯曲、冲击和碰撞试验。在有限元法框架内进一步开发和应用现有材料模型,研究超轻型直升机的尾翼和机舱门在高度生物基混合设计中的机械性能。元素、子组件和组件级别的迭代验证支持零件的混合和开发。拉伸试验表明,亚麻纤维复合材料的应力-应变行为呈非线性,被描述为双线性。这一发现以失效准则的形式纳入设计中。此外,将织物编织的结构机械性能与连续单向纤维复合材料进行了比较。编织亚麻复合材料的机械性能低于预期,单向增强层压板的应用被认为是更好的选择。对最终制造的部件也进行了实证分析,同时验证了它们的模拟和派生的材料模型。其他研究涉及亚麻纤维复合材料的吸湿性,以及对无损检测方法的适用性。亚麻广为宣传的优越的阻尼性能也可以得到验证。关于使用天然纤维复合材料的动机,通过比较生产和报废时所体现的能量与使用寿命内与质量相关的排放,评估了设计部件的生态效率。可以看出,节省原材料生产可以弥补小幅额外的质量损失,并且仍然可以带来整体有益的生态效率。总之,与传统纤维复合材料相比,分析了亚麻纤维复合材料的几种特性。研究结果和确定的趋势为进一步详细调查研究和为航空及相关行业的应用提出建议提供了基础。
玉米育种中最重要的两项活动是开发具有高一般配合力 (GCA) 和特殊配合力 (SCA) 值的自交系,以及鉴定具有高产量潜力的杂交种。基因组选择 (GS) 是一种很有前途的基因组工具,可根据从基因组预测 (GP) 估算的基因组估计育种值对未经测试的育种材料进行选择。在本研究中,进行了 GP 分析,以在三个玉米品系逐个测试试验中估计杂交种、GCA 和 SCA 的谷物产量 (GY) 表现,其中所有材料在 10 到 11 个多地点试验中进行了表型分析,并使用中密度分子标记平台进行了基因分型。结果表明,在模型的所有试验中,包括品系和测试者的加性效应,对杂交种表现的预测能力范围为 0.59 到 0.81。在同时包含加性和非加性效应的模型中,杂交种性能的预测能力得到了提高,所有试验的范围为 0.64 至 0.86。GY 的 GCA 预测能力较低,在仅包含自交系的模型的所有试验中范围为 0.14 至 0.13;在同时包含自交系和测试者的模型的所有试验中,GY 的 GCA 预测能力得到了提高,范围为 0.49 至 0.55,而 GY 的 SCA 预测能力在所有试验中均为负值。测试者之间的 GY 预测能力从 0.66 到 0.82 不等;测试者之间的杂交种性能很难预测。GS 提供了基于分子标记信息预测新杂交种性能和新自交系的 GCA 的机会,通过对更少的多地点试验进行表型分析,可以大幅降低总育种成本。 2021 中国作物学会和中国农业科学院作物科学研究所。由 Elsevier BV 代表科爱传播有限公司制作和托管。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
我们通过 CRISPR–Cas9 编辑 12 个优良玉米自交系中的蜡质等位基因,创造了蜡质玉米杂交种,这一过程比使用回交和标记辅助选择的传统性状基因渗入快了一年多。在 25 个地点进行的田间试验表明,CRISPR-蜡质杂交种在农艺上优于基因渗入杂交种,平均每英亩产量高出 5.5 蒲式耳。玉米蜡质基因 (Wx,也称为 Wx1) 编码一种颗粒结合的 NDP-葡萄糖-淀粉葡萄糖基转移酶,该酶负责延长直链淀粉中葡萄糖聚合物的线性链 1。野生型 (WT) 种子淀粉由~25% 直链淀粉和~75% 支链淀粉组成,而功能丧失的 wx 突变种子淀粉则由~100% 的支链淀粉组成,这使胚乳具有像蜡烛一样暗淡而光滑的外观 2 ,因此得名“糯玉米”。糯玉米淀粉用于造纸和粘合剂工业,并在食品工业中用作稳定剂和增稠剂 3 。美国每年在约 500,000 英亩的土地上生产约 8000 万蒲式耳糯玉米。有~200 个 wx 突变等位基因是自发产生的,通过随机诱变产生的,或通过非优良品系中的 CRISPR-Cas 靶向诱变产生的 4,5 。其中,wx-C 等位基因是现代商业糯玉米杂交种中使用最广泛的 wx 供体。商业化糯玉米杂交种是通过将 wx 突变基因渗入优良自交系而开发的。基因渗入通常需要与轮回亲本回交六到七代并自交才能获得用于商业化杂交生产的自交系。糯玉米杂交种的产量比对应的非糯玉米杂交种低约 5% 3 。产量降低的原因尚不清楚;可能是由于性状基因渗入造成的连锁累赘或 wx 突变导致的淀粉性质改变。使用 CRISPR-Cas9 进行基因组编辑和改进的转化技术 6 – 9 有可能缩短糯玉米杂交种的上市时间并消除回交过程中出现的连锁累赘。我们报道了使用 CRISPR-Cas9 和形态发生基因直接在 12 个优良玉米自交系中产生糯玉米缺失等位基因并进行多点产量测试的情况,所有这些过程耗时三年,这比基因渗入方法快得多。使用图 1a 中概述的策略,在优良自交系中生成了两个蜡质缺失等位基因,即 4 千碱基 (kb) 和 6 kb 缺失。为了在自交系 PH184C 中生成 4 kb 缺失系,将编码基因组编辑试剂 (指导对 CR1/CR3 和 Cas9;补充图 1) 的 DNA 引入未成熟胚胎中
尽管天堂鸟在形态、行为和求偶策略上存在很大差异,但它们偶尔也会杂交,甚至跨属杂交。许多这样的天堂鸟杂交种最初是根据与已知物种相比的巨大形态差异而被描述为不同物种的。如今,这些标本一般根据形态评估而被认定为杂交种。几个世纪以来,天堂鸟的杂交标本一直让博物学家着迷,它们被收集起来并保存在自然历史收藏中。在本研究中,我们在博物馆组学框架中利用这一宝贵资源,评估了大多数已描述的属间杂交种和一些属内杂交种的基因组组成。我们发现,大多数被研究的标本是第一代杂交种,而且在大多数情况下,亲本种类与之前的形态学评估相符。我们还发现了两个由不同属间基因渗入杂交产生的标本。此外,两个标本表现出杂交形态,但没有可识别的杂交信号,这可能表明少量的基因渗入可能产生很大的形态效应。我们的研究结果为自然界中天堂鸟属间同时发生的基因渗入杂交提供了直接证据,尽管它们的形态和求偶场交配行为存在显著差异。
过去曾发生过影响玉米产量的重大变化,例如 30 年代后期的双杂交种、50 年代中期的氮肥、60 年代的单杂交种、90 年代中期的转基因生物 (GMO),以及最近 2010 年的基因选择 [1]。CRISPR-Cas9 等现代基因编辑技术为研究人员和育种者提供了选择高产理想性状的可能性。然而,环境因素会影响作物的产量和生长。这些因素包括温度、降水、土壤成分等。该项目旨在利用机器学习技术发现影响产量的玉米基因与环境条件之间的相互作用。
在玉米方面,还发布了两个高产玉米杂交种,即 PJHM-2 和 PJHM-(R)-3。为了实现营养安全,发布了两个改良鹰嘴豆品种,即 Pusa Chickpea 3057 和 Pusa Chickpea 10217,分别提高了产量和抗旱能力,以及第一个基于 CGMS 的木豆杂交种 Pusa Arhar Hybrid-5。还致力于开发耐盐绿豆品种(PMS-8;PMD-9 和 PMD-10)和扁豆品种(PSL-17 和 PSL-19),扩大其在盐碱地区的种植。为提高各种作物的质量而进行的育种,催生了双零品质芥菜品种(Pusa Double Zero Mustard-35 和 Pusa Double Zero Mustard-36),这些品种具有低芥酸和低硫代葡萄糖苷,以及 MAS 衍生的 Kunitz 胰蛋白酶无抑制剂大豆品种 DS9421 和富含铁和锌的珍珠粟杂交品种 Pusa 1801。IARI 培育的生物强化和特种玉米杂交种被发现更适合生物乙醇生产,并将得到推广,以实现汽油中 20% 的生物乙醇混合目标。与北方邦酿酒商协会签署了一份谅解备忘录,以合作并提供能源部门的自给自足。
摘要:对精酿啤酒的需求不断增长,这推动了人们从酿酒相关的野生环境中寻找新型啤酒酵母培养物。精酿培养物生物勘探的重点是识别适合将独特感官属性印记到最终产品上的野生酵母。在这里,我们整合了系统发育、基因型、遗传和代谢组学技术,以证明在木桶中陈酿的酸啤酒是合适的精酿啤酒酵母候选物的来源。与传统的兰比克啤酒成熟阶段相反,在酸成熟的生产式啤酒的陈酿过程中,不同生物型的酿酒酵母占据了可培养的内部菌群的主导地位,其次是膜毕赤酵母、布鲁塞尔酒香酵母和异常酒香酵母。此外,还鉴定出三种假定的酿酒酵母×葡萄汁酵母杂交种。酿酒酵母野生菌株形成孢子,产生可存活的单孢子代,并且下游具有 STA1 基因作为全长启动子。在加酒花的麦芽汁发酵过程中,四种酿酒酵母菌株和酿酒酵母×葡萄汁酵母杂交种 WY213 的发酵速率和乙醇产量均超过非酿酒酵母菌株(P. membranifaciens WY122 除外)。该菌株在较长的滞后期后消耗麦芽糖,这与该物种描述的表型特征相反。根据 STA1 + 基因型,酿酒酵母部分消耗糊精。在酿酒酵母和酿酒酵母×葡萄汁酵母杂交种产生的挥发性有机化合物 (VOC) 中,具有水果香气的苯乙醇最为普遍。总之,这里描述的菌株具有相关的酿造特性,可以作为本土精酿啤酒的发酵剂。
讲座 5 种子质量 29-37 讲座 6 种子种类 38-43 讲座 7 玉米种子生产 44-54 讲座 8 玉米杂交种子生产 55-65 讲座 9 水稻品种种子生产技术 66-78 讲座 10 水稻杂交种子生产 79-88 讲座 11 高粱种子生产 89-96 讲座 12 高粱杂交种子生产 97-102 讲座 13 珍珠粟种子生产 103-113 讲座 14 棉花品种和杂交种种子生产 114-124 讲座 15 向日葵种子生产 125-134 讲座 16 蓖麻品种和杂交种种子生产 135-140 讲座 17 蔬菜种子生产技术 141-149 讲座 18茄子 ( solanum melongena ) 150-153 讲座 19 辣椒 ( capsicum frutescense ) 154-156 讲座 20 秋葵 ( abelmoschus esculentus ) 157-160 讲座 21 洋葱 ( allium cepa ) 161-172 讲座 22 葫芦科蔬菜的种子生产 173-178 讲座 23 种子认证 179-191 讲座 24 种子法和规则 192-212 讲座 25 知识产权 (IPRS) 213-217
摘要:我们比较了欧洲和美国消费者对基因编辑 (GE) 苹果的态度和支付意愿 (WTP)。使用实验室中的虚拟选择和不同的技术信息,我们估计了 162 名法国消费者和 166 名美国消费者对新苹果的 WTP,这些苹果在切片或切开时不会变褐。信息主要集中在 (i) 拥有新苹果的社会和私人利益,以及 (ii) 可能带来这种新利益的技术(传统杂交种、GE 和转基因 (GMO))。法国消费者不重视创新,当创新是通过生物技术产生时,他们实际上会打折。美国消费者确实重视创新,只要它不是由生物技术产生的。在这两个国家,折扣幅度最大的是转基因苹果,其次是转基因苹果。此外,折扣是通过“抵制”不喜欢生物技术的消费者来实现的。然而,与法国消费者相比,美国消费者的折扣力度较小。对科学和新技术的积极态度完全抵消了对转基因苹果的折扣。关键词:基因编辑;转基因生物;杂交种;消费者信息;实验经济学;支付意愿。
猪笼草又名猪笼草,是一种独特而有趣的植物,已被广泛开发作为观赏植物。这种植物的魅力不仅在于它的花朵,还在于它的花囊,花囊的形状和颜色多种多样。基于分子表征可以确定猪笼草的几种物种和杂交种的多样性。这项研究的目的是计算遗传多样性的值,并在分子基础上利用 RAPD 引物测试印度尼西亚猪笼草之间的关系。本研究使用的材料是从 Yagiza 苗圃猪笼草苗圃、食虫植物苗圃、Tulungagung 猪笼草群落和毒液苗圃的勘探结果中获得的 41 种物种和由 3 个个体组成的猪笼草杂交种。分子 DNA 分析是在加查马达大学 (UGM) 农学院农业栽培系遗传学和植物育种实验室进行的。 3个RAPD引物(OPD 8、OPC 2和OPC15)对41个物种及其杂交种进行检测,共得到85个位点,1370个DNA带,大小为150~1750 bp,多态性水平为100%,形成的特异性带数共12条。聚类分析结果表明,多样性水平在17%~100%之间,可分为A组和B组,相似性水平为17%。遗传参数分析结果表明,居群(N. eustahcya x N. ampularia)各参数的遗传差异最大且一致(Na=0.576±0.092、Ne=1.162±0.035、I=0.136±0.027),PLP为23,53%,平均杂合度(H)为0.093±0.019。最高相似系数值为0.338,表明N.veitchii与N.adnata亲缘关系较远,最低相似系数值为0.050,表明N.maxima wavy与N.maluku亲缘关系较近。AMOVA分析显示,猪笼草居群间遗传多样性分布值(74%)高于居群内多样性值(26%)。同时,猪笼草种群间遗传多样性分布值(70%)高于种群内遗传多样性分布值(30%)。关键词:猪笼草;分子;RAPD。