文本到图像的扩散模型在可控图像生成领域取得了巨大成功,同时也带来了隐私泄露和数据版权问题。成员资格推断在此背景下作为检测未经授权数据使用的潜在审计方法而出现。虽然人们对扩散模型进行了一些研究,但由于计算开销和增强的泛化能力,它们并不适用于文本到图像的扩散模型。在本文中,我们首先发现文本到图像的扩散模型中的条件过拟合现象,表明这些模型倾向于在给定相应文本的情况下过拟合图像的条件分布,而不仅仅是图像的边际分布。基于这一观察,我们推导出一个分析指标,即条件似然偏差(CLiD),以进行成员资格推断,这降低了估计单个样本记忆的随机性。实验结果表明,我们的方法在各种数据分布和数据集规模上都明显优于以前的方法。此外,我们的方法表现出对过度拟合缓解策略(例如早期停止和数据增强)的卓越抵抗力。
摘要 — 机器学习界对解决对称正定 (SPD) 流形上的域自适应问题表现出越来越浓厚的兴趣。这种兴趣主要源于脑信号生成的神经成像数据的复杂性,这些数据通常会在记录会话期间表现出数据分布的变化。这些神经成像数据以信号协方差矩阵表示,具有对称性和正定性的数学性质。然而,应用传统的域自适应方法具有挑战性,因为这些数学性质在对协方差矩阵进行运算时可能会被破坏。在本研究中,我们介绍了一种基于几何深度学习的新型方法,该方法利用 SPD 流形上的最佳传输来管理源域和目标域之间边缘分布和条件分布的差异。我们在三个跨会话脑机接口场景中评估了该方法的有效性,并提供了可视化结果以获得进一步的见解。该研究的 GitHub 存储库可通过 https://github.com/GeometricBCI/Deep-Optimal-Transport-for-Domain-Adaptation-on-SPD-Manifolds 访问。
摘要 起落架是飞机的主要部件之一。起落架不仅在起飞和降落时使用,而且在大多数情况下也用于地面机动。由于其功能,起落架也是飞机的关键安全部件之一,因为它可以分散作用在飞机上的着陆载荷。上述载荷来自着陆时的垂直和水平速度,以及飞机因刹车而失去速度。起落架在每次着陆时都会承受不断变化的力,作用在各个方向上,唯一的区别在于它们的大小。重复的载荷条件会导致起落架严重磨损。这种磨损可分为两类,一类是刹车片等易耗件的磨损,另一类是结构部件的疲劳磨损。后一种磨损更危险,因为它进展缓慢,在许多情况下难以察觉。疲劳磨损可以通过数值分析来估计——这种方法对单个部件有很大的概率,但由于起落架整体的复杂性,它不够精确,无法应用于整个结构。为了评估整个起落架的疲劳,法规接受的最佳方法是实验室测试方法。它涉及一系列类似于真实着陆条件分布的各种跌落测试。测试的目的是
由于人工智能越来越多地用于高风险应用,因此可以解释使用的模型变得越来越重要。贝叶斯网络提供了基于概率理论的可靠人工智能的范式。他们提供了一种语义,该语义可以通过利用它们之间的条件独立性来实现与域变量相关的概率分布的声明性表示。该表示由有向的无环图组成,该图编码变量之间的条件独立性以及编码条件分布的一组参数。此表示为开发概率推理(推理)和从数据学习概率分布的算法提供了基础。贝叶斯网络用于机器学习中的各种任务,包括聚类,超级分类,多维监督分类,异常检测和时间修改。他们还提供了估计分布算法的基础,这是启发式优化的一类进化算法。我们通过在神经科学,行业和生物启示中介绍应用程序来说明贝叶斯网络在可解释的机器学习和优化中的使用,涵盖了广泛的机器学习和优化任务。2021由Elsevier B.V.
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
分位数回归和条件密度估计可以揭示平均回归遗漏的结构,例如多模式和偏度。在本文中,我们引入了一个深度学习生成模型,以用于关节分位数估计,称为惩罚生成分位数回归(PGQR)。我们的方法同时生成了来自许多随机分位水平的样品,从而使我们能够在给定一组协变量的情况下推断响应变量的条件分布。我们的方法采取了一种新颖的可变性惩罚,以避免在深层生成模型中消失的可变性或记忆的问题。此外,我们引入了一个新的部分单调神经网络(PMNN),以避免穿越分位曲线的问题。PGQR的一个主要好处是,它可以使用单个优化来拟合,从而绕过需要在多个分位级别反复训练模型或使用计算上昂贵的交叉验证来调整罚款参数。我们通过广泛的模拟研究和对实际数据集的分析来说明PGQR的功效。实施我们方法的代码可在https://github.com/shijiew97/pgqr上获得。
线性方程的线性代数系统:矩阵的范围空间和空空间,矩阵的等级,线性方程系统的解决方案的存在和唯一性,与线性方程系统相关的解决方案空间的尺寸。向量空间:向量空间,子空间,双空间,内核,空空间,线性独立性和依赖性,线性跨度,基础,维度,直接总和,线性变换。矩阵表示:特征值和特征向量,相似性,等级和无效,对角线化,约旦形式。随机变量和随机过程随机变量,分布和密度函数,力矩和力矩生成功能,多元分布,独立的随机变量,边际和条件分布,条件期望,随机变量的转换,随机变量的转换,随机过程的元素,随机过程的元素,一般随机过程的分类。马尔可夫链:定义,示例,过渡概率,状态和链的分类,基本限制定理,限制马尔可夫链的分布。ODE的ODE和计算系统的系统:通过Lipchitz条件,解决方案和稳定性的解决方案的存在和独特性。变化的计算:变分问题的示例,变异问题的基本计算,弱和强大的极端和强大的终点问题,哈密顿量。参考:
在介入的健康研究中,可以使用因果中介分析来研究干预影响目标健康结果的机制。识别直接和间接(即介导的)效果会变得复杂。在这里,我们研究了在与纵向介体,事件时间结局和三分法序数治疗依赖性混杂因素的情况下,在这种情况下进行中介作用的鉴定。我们表明,如果干预始终仅在一个方向上影响治疗依赖性混杂因子(单调性),则将中介作用鉴定为灵敏度参数并得出其经验性的非参数表达。单调性假设可以根据对治疗依赖性混杂因子的条件分布的限制来从经验数据中评估。我们通过将调解人视为功能性实体,并将事实结果定义为无疾病的时间,避免了与治疗后调节有关的陷阱。在经验分析中,我们使用芬兰糖尿病预防研究的数据来评估生活方式干预对避免避免2型糖尿病的影响的程度,通过减轻高风险人群的体重来介导其他与健康相关的变化,而其他与健康相关的变化则用作治疗依赖性的混杂因素。
摘要:野生活动的增加以及产生的影响促使人们开发了高分辨率的野生行为模型,以预测蔓延。使用卫星检测火灾位置的最新进展进一步提供了使用测量结果来改善通过数据同化来改善数值模型的差异预测的机会。这项工作开发了一种具有物理信息的方法,可以从卫星测量中推断野生燃料的历史,从而提供必要的信息,以初始化耦合的气氛 - 从测得的野生野生状态的野生模型。到达时间是到达给定的空间位置的时间,它是野生火灾历史的简洁表示。在这项工作中,经过WRF - SFIRE模拟训练的有条件的Wasserstein生成对抗网络(CWGAN)用于从卫星主动数据中推断出到达的时间。CWGAN用于从给定卫星主动检测的到达时间的条件分布中产生可能到达时间的样本。由CWGAN产生的样品进一步用于评估预测的不确定性。在2020年至2022年之间,对四个加利福尼亚野生火力进行了测试,并将预测与高分辨率机载红外措施进行比较。此外,将预测的点火时间与报告的点火时间进行了比较。平均Sørensen的系数为0.81,用于固定器的周围和32分钟的平均点火时间差表明该方法非常准确。
RNA设计显示了RNA在各种生物过程中的关键作用驱动的合成生物学和治疗剂中越来越多的应用。 一个基本的挑战是找到满足结构约束的功能性RNA序列,称为反折叠问题。 已经出现了基于二级结构的计算方法来解决此问题。 然而,由于数据的稀缺,非唯一的结构序列映射和RNA构象的灵活性,直接从3D结构设计RNA序列仍然具有挑战性。 在这项研究中,我们提出了RECODI↵一种用于RNA逆折叠的生成二次模型,可以学习给定3D主链结构的RNA序列的条件分布。 我们的模型由基于图神经网络的结构模块和基于变压器的序列模块组成,该模块将随机序列转换为所需的序列。 通过调整采样重量,我们的模型允许序列恢复和多样性之间进行交易,以探索更多的候选者。 我们将基于RNA聚类的测试集使用DI↵Cut-O↵S序列或结构相似性。 我们的模型在序列恢复中的表现优于基准,序列相似性分裂的平均相对改善为11%,结构相似性分裂的平均相对提高为16%。 此外,Ribodi↵在各种RNA长度类别和RNA类型中的表现始终如一。 我们还施加了内部折叠,以验证生成的序列是否可以折叠到给定的3D RNA骨架中。RNA设计显示了RNA在各种生物过程中的关键作用驱动的合成生物学和治疗剂中越来越多的应用。一个基本的挑战是找到满足结构约束的功能性RNA序列,称为反折叠问题。已经出现了基于二级结构的计算方法来解决此问题。然而,由于数据的稀缺,非唯一的结构序列映射和RNA构象的灵活性,直接从3D结构设计RNA序列仍然具有挑战性。在这项研究中,我们提出了RECODI↵一种用于RNA逆折叠的生成二次模型,可以学习给定3D主链结构的RNA序列的条件分布。我们的模型由基于图神经网络的结构模块和基于变压器的序列模块组成,该模块将随机序列转换为所需的序列。通过调整采样重量,我们的模型允许序列恢复和多样性之间进行交易,以探索更多的候选者。我们将基于RNA聚类的测试集使用DI↵Cut-O↵S序列或结构相似性。我们的模型在序列恢复中的表现优于基准,序列相似性分裂的平均相对改善为11%,结构相似性分裂的平均相对提高为16%。此外,Ribodi↵在各种RNA长度类别和RNA类型中的表现始终如一。我们还施加了内部折叠,以验证生成的序列是否可以折叠到给定的3D RNA骨架中。我们的方法可能是RNA设计的强大工具,可以探索庞大的序列空间并为3D结构约束发现新颖的解决方案。