感兴趣的冲突:S.R.F.已获得Eli Lilly and Company,GlaxoSmithKline/Stiefel,Abbvie,Janssen,Janssen,Alovtech,VTV Ther-Apeutics,Bristol Myers Squibb,Samsung,Samsung,Samsung,ppifier,Boehringer Ingelheim,Amgen Inv. Helsinn, Sun Pharma, Almirall, Galderma, LEO Pharma, Mylan, Celgene, Valeant, Menlo, Merck & Co, Qurient Forte, Arena, Biocon, Accordant, Argenx, Sanofi, Regeneron, the National Biological Corporation, Caremark, Advance Medical, Suncare Research, Informa, UpToDate and the National Psoria- sis Foundation.他还是DRSCORE.com的创始人和多数所有者,也是CAUSA Research的创始人和所有者。R.O.P. 曾在诺华顾问委员会工作。 其他作者声明他们没有感兴趣的冲突。R.O.P.曾在诺华顾问委员会工作。其他作者声明他们没有感兴趣的冲突。
残余应力的机械松弛 / Leonard Mordfin,编辑。(STP;993) 残余应力机械松弛国际研讨会论文,于 1987 年 4 月 30 日在俄亥俄州辛辛那提举行,由 ASTM 机械测试委员会 E-28 赞助。包括参考书目和索引。“ASTM 出版物代码编号 (PCN) 04-993000-23。”ISBN 0-8031-1166-5 1.残余应力——会议。2.应力松弛——会议。I. Mordfin,Leonard。II.残余应力机械松弛国际研讨会(1987 年:俄亥俄州辛辛那提)III。美国材料与试验协会。机械测试委员会 E-28。IV.系列:ASTM 特别技术出版物;993。TA417.6.M4261988 88-15450 620.1'124—dc 19。CIP
由于空气动力学、重量和成本限制,当前太空发射系统(例如火箭)的有效载荷尺寸很小。可展开结构允许在发射和在任务地点展开时处于折叠或收起状态。聚合物复合材料与当前的金属结构相比,既能减轻重量,又能整体提高特定机械强度。然而,聚合物复合可展开结构遇到的一个问题是收起配置下聚合物基质的应力松弛。在本研究中,评估了一系列不同的环氧树脂配方作为可展开复合材料的潜在基质树脂。与最先进的航空航天环氧树脂基质相比,预计一种含有强化添加剂的新型多功能环氧树脂在 1 年后应力松弛会减少 70%。
摘要:微环境力学在损伤后的形态发生和免疫反应中起着至关重要的作用,但由于脊髓损伤 (SCI) 中脆弱的机械强度和氧化性生理环境阻碍了对微环境力学的探索。在这里,我们设计了具有与神经组织匹配的机械性能的对映体肽自组装水凝胶,以通过立体构象识别和随之而来的蛋白质亲和力差异持续操纵细胞膜张力和机械转导。D-对映体水凝胶诱导的细胞内张力松弛激活星形胶质细胞中的神经发生和 ECM 重塑,抑制促炎并促进小胶质细胞中的促再生,这显著促进了大鼠严重 SCI 模型中的神经保护和功能恢复。与非神经细胞相反,细胞内张力松弛诱导的形态发生可能是神经特性,因为下游的机械信号是由由此产生的神经源性形态变化激活的。总体而言,诱导细胞内张力松弛是促进神经再生的潜在有效策略。
膨胀蛋白是一组古老的细胞壁蛋白,在陆生植物及其藻类祖先中普遍存在。在细胞生长过程中,它们促进细胞壁的纤维素网络被动屈服于膨压产生的拉伸应力,而没有酶活性的证据。膨胀蛋白还与果实软化和其他发育过程以及对环境压力和病原体的适应性反应有关。植物中的主要膨胀蛋白家族包括作用于纤维素-纤维素连接的 α -膨胀蛋白 (EXPA) 和可作用于木聚糖的 β -膨胀蛋白。EXPA 介导酸性生长,这有助于生长素和其他生长剂使细胞壁增大。包括许多植物病原体在内的各种微生物的基因组也编码被称为类膨胀蛋白 X 的膨胀蛋白。膨胀蛋白被认为会破坏横向排列的多糖(尤其是纤维素)之间的非共价键,从而促进细胞壁松弛,发挥各种生物学作用。
我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,和 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还基于来自量子信息理论的谱信息散度提供了计算效率更高的松弛。对于上述所有任务,除了提出新的松弛之外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
摘要 我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,以及 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还提供了基于量子信息理论的谱信息散度的计算效率更高的松弛方法。对于上述所有任务,除了提出新的松弛方法外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
水凝胶基质的粘弹性对3D培养和生物制作组织模型系统的细胞行为敏感。先前的报道表明,在具有明显的压力松弛的水凝胶中,细胞倾向于粘附,扩散,迁移和增殖。然而,目前尚不清楚细胞是否对压力松弛的振幅更为敏感,或者对放松时间常数的反应。为了测试这一点,我们比较了在藻酸盐中最多10天培养的成纤维细胞的行为,并氧化了具有相似杨氏模量的藻酸盐水凝胶,但应力放松行为不同。我们发现成纤维细胞在水凝胶中细长,迁移和增殖更好,这些水凝胶显示出更高的应力松弛幅度。相比之下,细胞对松弛时间常数的响应不太明显且不一致。在一起,这些数据表明,最重要的是基质的应力松弛幅度,该矩阵决定了细胞局部穿透和重塑矩阵的能力,随后会导致更好的扩散,更快的迁移和更高的细胞增殖。我们得出的结论是,应力松弛振幅是用于优化3-D水凝胶中细胞行为的中心设计参数。
摘要:在环聚(乙烷氧化乙烷)(PEO)的大分子的融化中,研究了质子和依特子的自旋松弛,其分子质量从5280到96,000 DA不等。比较NMR自旋 - 晶格松弛速率与相似分子质量的线性PEO熔体的相应速率的频率分散率表明,相邻环大分子的相互互穿的显着相互互穿,尽管不如其线性对应物相比。与中间人自旋回波(NSE)的结果一致的时间间隔,在调查的频率间隔中,环段的平均值位移在8×10-9至2×10-5 s的相对应的频率间隔中取决于⟨r n 2(t)⟩∝ t 0.39。在环大分子中的归一化Hahn回波信号的衰减在实验误差中是指数的,与他们的线性同行不同,在其线性同行中,发现强烈的非义务行为。这表明NMR看到的环段的动态异质性不存在与线性类似物中末端段有关的影响。■简介
本文由美国国家技术与工程解决方案公司桑迪亚有限责任公司的一名员工撰写,合同编号为 DE-NA0003525,与美国能源部 (DOE) 签订。该员工拥有本文的所有权利、所有权和利益,并对其内容负全部责任。美国政府保留,而出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本文的已发表形式或允许他人这样做。美国能源部将根据美国能源部公共访问计划 https://www.energy.gov/downloads/doe-public-access-plan 向公众提供这些联邦资助研究的结果。