全球气候模型(GCMS)模拟了全球范围内的低分辨率投影。GCM的本地分辨率通常对于社会级别的决策而言太低。为了增强空间分辨率,通常将降尺度应用于GCM输出。尤其是统计缩减技术,是一种具有成本效益的方法。与基于物理的动力学缩放相比,它们所需的计算时间要少得多。近年来,与传统统计方法相比,统计降尺度的深度学习越来越重要,证明错误率明显较低。但是,基于回归的深度学习技术的缺点是它们过度适合平均样本强度的趋势。极值通常被低估。问题上,极端事件具有最大的社会影响。我们提出了分位数回归征(QRE),这是一种受增强方法启发的创新深度学习al-gorithm。它的主要目标是通过训练分区数据集上的独立模型来避免拟合样品平均值和特殊值之间的权衡。我们的QRE对冗余模型具有鲁棒性,并且不容易受到爆炸性集成权重的影响,从而确保了可靠的训练过程。QRE达到了较低的均方误差(MSE)。尤其是,对于新西兰的高强度沉淀事件,我们的算法误差较低,突出了能够准确代表极端事件的能力。
由于可再生能源产生,能源存储,电气最终用途以及极端天气事件的频率不断增加,能源,气候和天气之间的相互作用变得越来越复杂。能源系统分析通常依赖气象输入来估计可再生能源的产生和能源需求;但是,这些投入很少代表未来气候变化的估计影响。气候模型和可公开可用的气候变化数据集可用于此目的,但是从无数可用模型和数据集中选择的输入是一个细微的主观过程。在这项工作中,我们评估了来自耦合模型比较项目阶段6(CMIP6)的各种全球气候模型(GCM)的数据集。我们对他们的技能进行了评估,以了解其历史气候和对两种气候变化情景气候变化的未来预测的比较。我们介绍了不同气候和能源系统区域的结果,并在随附的软件存储库中包括交互式数字。先前的工作已经进行了类似的GCM评估,但是没有一个提出了用于全面的能源系统分析的变量和指标,包括对能源需求,热冷却,水力发电,水的可用性,太阳能产生和风能产生的影响。我们专注于直接影响这些能源系统组件的GCM输出气象变量,包括可以驱动网格弹性事件的极值表示。这项工作的目的不是为给定的分析推荐最佳的气候模型和数据集,而是提供参考以促进随后工作中的气候模型和场景的选择。
摘要。在预计极端预言的预计增加之后,例如高纬度地区或高海拔高度时,寒冷地区可能会增加极端降雪。相比之下,在低至中等区域中,由于变暖条件,预计经历降雨而不是降雪的可能性会增加。然而,在山区,尽管可能存在这些对比趋势,但根据海拔的趋势,量化的降雪变化仍然很差。本文评估了在法国阿尔卑斯山的平均年度最大值和100年回报水平的大降雪和极端降雪的预计变化,这是海拔和全球温暖水平的函数。我们将最近的方法基于具有非平稳性极值模型的年度最大值的肛门,以从代表性的8.5(RCP8.5)场景下的20个调整后的一般循环模型 - 区域气候模型(GCM – RCM)对。对于法国阿尔卑斯山的23个地块中的每一个,在水文意义上(8月1日至7月31日)的最大值是从1951年到2100,每300 m的高度在900至3600 m之间。依赖于按块量表和所有按摩中的量表和平均年龄计算出的相对或绝对变化(在此对应于当前的气候条件(在此对应于 + 1℃)。在 + 4℃,平均年度最大值和100-总体而言,预计每日平均降雪年度最大值将降低到3000 m以下,并增加到3600 m以上,而100年的回报水平预计将降低到2400 m以下,并增加到3300 m以上。在介于两者之间的高度上,值平均预计会增加,直到 + 3℃全球变暖,然后降低。
摘要:背景:母亲怀孕期间的饮食可能通过母亲的微生物群影响婴儿的健康状况。我们评估了地中海地区母亲饮食指数 (MDI-med) 与婴儿 1 个月大时肠道微生物群的关联。方法:MAMI 研究是地中海地区的一个纵向出生队列。在这项工作中,进行了一项横断面研究,包括 120 对母婴对,他们有 1 个月大时的母亲饮食和婴儿微生物群数据。美国开发的 MDI (MDI-US) 已针对 MAMI 队列 (MDI-med) 进行了调整。基于极值进行分层(平均值“较低”的 MDI-med 组有 22 个,平均值“较高”的组有 23 个)。比较了各组之间的相对微生物丰度和 alpha(微生物丰富度和多样性指数)和 beta 多样性(Bray-Curtis 距离矩阵)。结果:母亲每日蔬菜摄入量较高、红肉摄入量较低是 MDI-med 评分较高组的特征。与 MDI-med 评分较低组相比,“上层”组的微生物多样性(Shannon 和 InvSimpson 指数(p = 0.01))明显较低,但丰富度(Chao1 指数)和 β 多样性(使用 Bray-Curtis 距离)没有变化。双歧杆菌属(放线菌门)的相对丰度较高与母亲每日蔬菜和酸奶摄入量有关。结论:1 月龄婴儿微生物多样性降低与 MDI-med 评分较高有关。母亲蔬菜和酸奶摄入量较高与婴儿肠道中双歧杆菌属的相对丰度较高有关。需要进一步研究来了解孕期饮食、婴儿微生物群和健康结果之间的联系。
摘要 摘要 在过去的几十年中,已经开发出了许多量子算法。阻碍这些算法广泛实施的主要障碍是可用量子计算机的量子比特规模太小。盲量子计算 (BQC) 有望通过将计算委托给量子远程设备来处理此问题。在这里,我们介绍了一种新颖的约束量子遗传算法 (CQGA),该算法以非常低的计算复杂度选择约束目标函数(或庞大的未排序数据库)的最佳极值(最小值或最大值)。由于约束经典遗传算法 (CCGA) 收敛到最优解的速度高度依赖于最初选择的潜在解的质量水平,因此 CCGA 的启发式初始化阶段被量子阶段取代。这是通过利用约束量子优化算法 (CQOA) 和 BQC 的优势实现的。所提出的 CQGA 用作上行链路多小区大规模 MIMO 系统的嵌入式计算基础设施。该算法在考虑不同用户目标比特率类别的同时,最大化上行大规模 MIMO 的能量效率 (EE)。仿真结果表明,建议的 CQGA 通过仔细计算每个活跃用户的最佳发射功率,使用比 CCGA 更少的计算步骤,实现了能量效率的最大化。我们证明,当整体发射功率集或总体活跃用户数量增加时,与 CCGA 相比,CQGA 始终执行较少数量的生成步骤。例如,如果我们考虑将总体活跃用户数量 () 设置为 18 的场景,CQGA 会使用较少的生成步骤数(等于 6)找到最优解,而 CCGA 则需要更多的生成步骤数,达到 65。
摘要。在过去的3年中,在巴伐利亚的几条大河流中观察到了极端回流期及以后的严重浮游。洪水保护结构通常是根据100年的事件设计的,重新基于相对较短的观察时间序列的统计外推,同时忽略潜在的时间非平稳性。然而,未来的降水预测表明,极端降雨事件的频率和强度的增加以及季节性的变化。这项研究旨在检查气候变化对水文巴伐利亚水文中98个水文测量表的100年流量(HF 100)事件的影响。由区域单模型初始条件(Smile)组成的水文气候变化影响(CCI)建模链创建了单个模型。使用加拿大区域气候模型5的50个可能的成员大型合奏(CRCM5-LE)用于驱动水文模型WASIM(水平衡模拟模型)以创建水力毫米。结果,建立了每次研究的时间段1500年(50名成员×30年)的数据库进行极端价值分析(EVA),以说明基于年度最大值(AM)的强大估计HF 100的Hydro-Simile方法的好处,并根据HF的频率和幅度进行了A的频率和巨大的频率,以A的频率和幅度a的频率A的频率和大量的A a。 (RCP8.5)。因此,通过应用结果表明,使用1500 AM的经验概率,与使用普通的极值(GEV)分布的1000个样本的典型可用时间间隔大小为30、100和200年的估算相比,使用1500 AM的HF 100估算提供了明显的优势。
环境现象。在气候科学中,在包括温度在内的广泛变量的建模中已经取得了显着的进步(Clarkson等人。2023),降水(Katz 1999),风速(Kunz等2010; Fawcett和Walshaw 2006)以及其他更广泛的环境主题(包括水文学)(Towler等人2010; Katz等。2002)和空气污染(Gouldsbrough等人 2022)。 在本文中,我们概述了“ Uniofbathtopia”团队在第13届国际极端价值分析会议(EVA2023)举办的数据挑战中使用的技术。 可以在社论中找到对任务的完整描述(Rohrbeck等人 2023)。 我们概述了四个子挑战中的每一个方法,在该方法中,我们根据每个任务的要求,将极值统计的传统方法与其他统计学建模技术进行补充。 挑战涉及在环境应用的背景下,在“乌托邦”的精美国家设计的环境应用中估算极边缘的分位数,边缘超出概率和关节尾概率。 竞争组织者使用已知参数模拟了数据,以便可以验证和比较团队的模型,并以模仿现实世界过程所表现出的丰富,复杂的行为。 因此,我们期望我们提出的方法的性能扩展到一般设置和应用程序。 我们还使用引导方法进行置信间隔估计(Gilleland 2020)。 2013)。2002)和空气污染(Gouldsbrough等人2022)。在本文中,我们概述了“ Uniofbathtopia”团队在第13届国际极端价值分析会议(EVA2023)举办的数据挑战中使用的技术。可以在社论中找到对任务的完整描述(Rohrbeck等人2023)。我们概述了四个子挑战中的每一个方法,在该方法中,我们根据每个任务的要求,将极值统计的传统方法与其他统计学建模技术进行补充。挑战涉及在环境应用的背景下,在“乌托邦”的精美国家设计的环境应用中估算极边缘的分位数,边缘超出概率和关节尾概率。竞争组织者使用已知参数模拟了数据,以便可以验证和比较团队的模型,并以模仿现实世界过程所表现出的丰富,复杂的行为。因此,我们期望我们提出的方法的性能扩展到一般设置和应用程序。我们还使用引导方法进行置信间隔估计(Gilleland 2020)。2013)。在单变量任务中,我们使用了广义帕累托分布(GPD),并使用基于模型的聚类方法在内(Hastie等人。2009)和混合模型(Fraley and Raftery 2002)以及马尔可夫链蒙特卡洛(MCMC)进行参数估计(Coles and Powell 1996)。对于多元问题,我们的方法基于定期变化随机变量的最大线性组合的参数族(Fougères等人。我们使用现代的现代精学学习技术(包括稀疏诱导的预测和聚类),推动了对这些模型进行推理的新方法,推进了现有方法(Cooley and Thibaud 2019; Kiriliouk and Zhou 2022)。我们工作的新方面是:探索尾尾行为不确定性较大的系统的MCMC参数估计偏置,并提出了基于稀疏投影的Max-linear模型的噪声系数的新估计器。本文的格式如下:第2节描述了我们针对单变量挑战的解决方案,每个挑战将每个挑战分为方法论和结果。第3节介绍了必要的背景理论,这些理论是从多变量极端的。我们在第4节中对我们的绩效进行了一些最后的讨论。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。