Loading...
机构名称:
¥ 2.0

环境现象。在气候科学中,在包括温度在内的广泛变量的建模中已经取得了显着的进步(Clarkson等人。2023),降水(Katz 1999),风速(Kunz等2010; Fawcett和Walshaw 2006)以及其他更广泛的环境主题(包括水文学)(Towler等人2010; Katz等。2002)和空气污染(Gouldsbrough等人 2022)。 在本文中,我们概述了“ Uniofbathtopia”团队在第13届国际极端价值分析会议(EVA2023)举办的数据挑战中使用的技术。 可以在社论中找到对任务的完整描述(Rohrbeck等人 2023)。 我们概述了四个子挑战中的每一个方法,在该方法中,我们根据每个任务的要求,将极值统计的传统方法与其他统计学建模技术进行补充。 挑战涉及在环境应用的背景下,在“乌托邦”的精美国家设计的环境应用中估算极边缘的分位数,边缘超出概率和关节尾概率。 竞争组织者使用已知参数模拟了数据,以便可以验证和比较团队的模型,并以模仿现实世界过程所表现出的丰富,复杂的行为。 因此,我们期望我们提出的方法的性能扩展到一般设置和应用程序。 我们还使用引导方法进行置信间隔估计(Gilleland 2020)。 2013)。2002)和空气污染(Gouldsbrough等人2022)。在本文中,我们概述了“ Uniofbathtopia”团队在第13届国际极端价值分析会议(EVA2023)举办的数据挑战中使用的技术。可以在社论中找到对任务的完整描述(Rohrbeck等人2023)。我们概述了四个子挑战中的每一个方法,在该方法中,我们根据每个任务的要求,将极值统计的传统方法与其他统计学建模技术进行补充。挑战涉及在环境应用的背景下,在“乌托邦”的精美国家设计的环境应用中估算极边缘的分位数,边缘超出概率和关节尾概率。竞争组织者使用已知参数模拟了数据,以便可以验证和比较团队的模型,并以模仿现实世界过程所表现出的丰富,复杂的行为。因此,我们期望我们提出的方法的性能扩展到一般设置和应用程序。我们还使用引导方法进行置信间隔估计(Gilleland 2020)。2013)。在单变量任务中,我们使用了广义帕累托分布(GPD),并使用基于模型的聚类方法在内(Hastie等人。2009)和混合模型(Fraley and Raftery 2002)以及马尔可夫链蒙特卡洛(MCMC)进行参数估计(Coles and Powell 1996)。对于多元问题,我们的方法基于定期变化随机变量的最大线性组合的参数族(Fougères等人。我们使用现代的现代精学学习技术(包括稀疏诱导的预测和聚类),推动了对这些模型进行推理的新方法,推进了现有方法(Cooley and Thibaud 2019; Kiriliouk and Zhou 2022)。我们工作的新方面是:探索尾尾行为不确定性较大的系统的MCMC参数估计偏置,并提出了基于稀疏投影的Max-linear模型的噪声系数的新估计器。本文的格式如下:第2节描述了我们针对单变量挑战的解决方案,每个挑战将每个挑战分为方法论和结果。第3节介绍了必要的背景理论,这些理论是从多变量极端的。我们在第4节中对我们的绩效进行了一些最后的讨论。

分析模拟环境极端的极端价值统计

分析模拟环境极端的极端价值统计PDF文件第1页

分析模拟环境极端的极端价值统计PDF文件第2页

分析模拟环境极端的极端价值统计PDF文件第3页

分析模拟环境极端的极端价值统计PDF文件第4页

分析模拟环境极端的极端价值统计PDF文件第5页

相关文件推荐

2025 年
¥1.0
2025 年
¥1.0
1900 年
¥10.0
2009 年
¥33.0
2013 年
¥29.0