该项目处理加州大学圣地亚哥分校 Julian McAuley 提供的亚马逊数据集。该项目旨在使用潜在狄利克雷分配 (LDA) 提取亚马逊文本评论中讨论的特征。此外,一旦提取出特征,就会构建一个推荐器。为了实现这一点,该项目提出了各种模型,如主题聚类推荐、无约束矩阵分解和基于内容的过滤。首先,清理数据集并进行数据探索以观察数据中的各种趋势。根据评论的评分,创建词云以确定数据集中每个单词的重要性。在初步数据探索之后,使用潜在狄利克雷分配 (LDA) 提取数据集中讨论的主题。[8,10] 最后,使用这些主题,在主题聚类推荐、无约束矩阵分解和基于内容的过滤等不同模型的帮助下构建推荐器。根据召回率和平均绝对误差等指标,将选择最佳模型。关键词:亚马逊,推荐器,LDA,主题建模,基于内容的过滤,矩阵分解 1.简介 互联网是重要的信息来源。过去几年,电子商务领域取得了长足的发展。几乎所有我们需要的东西都可以在网上轻松获得。亚马逊、eBay 和 Flipkart 等网站在电子商务中发挥着至关重要的作用。亚洲、非洲/中东和拉丁美洲地区超过 60% 的人口愿意在线购物 [7]。据观察,2017 年第一季度,电子商务销售额达到 1057 亿美元 [10]。如果大多数人依赖电子商务网站购物,那么概述网站上发布的有关产品的评论就很重要。其他各种客户都会阅读有关在线发布的任何产品的评论。根据现有的评论和可用的评论数量,客户往往会决定是否购买该产品。网站上任何产品的评论对于决定网站或产品的成功都起着非常重要的作用。
低温电子显微镜(cryo-EM)已成为确定大型蛋白质复合物和分子组装体结构的主要实验技术,2017 年的诺贝尔奖就是明证。尽管低温电子显微镜已得到极大改进,可以生成包含大分子详细结构信息的高分辨率三维(3D)图谱,但利用这些数据自动构建结构模型的计算方法却远远落后。传统的低温电子显微镜模型构建方法是基于模板的同源性建模。当数据库中找不到模板模型时,手动从头建模非常耗时。近年来,使用机器学习(ML)和深度学习(DL)的从头低温电子显微镜建模已成为大分子结构建模中表现最好的方法之一。基于深度学习的从头低温电子显微镜建模是人工智能的重要应用,其成果令人印象深刻,对下一代分子生物医学具有巨大潜力。因此,我们系统地回顾了具有代表性的基于 ML/DL 的从头低温电子显微镜建模方法。并从实践和方法论的角度讨论了它们的意义。我们还简要介绍了低温电子显微镜数据处理工作流程的背景。总体而言,本综述为从头分子结构建模的人工智能 (AI) 现代研究以及这一新兴领域的未来方向提供了入门指南。
人工智能驱动的模拟器的兴起:构建新的水晶球 计算社区联盟 (CCC) 四年期论文 Ian Foster(芝加哥大学)、David Parkes(哈佛大学)和 Stephan Zheng(Salesforce AI Research) 五十年前,天气预报员努力预测明天的天气是否与今天相同。如今,天气预报通常可以准确预测未来一周或更长时间,让个人和社会能够为不再不可预见的事情做好准备。这种显著的转变在很大程度上归功于计算机,尤其是计算模拟的兴起,这是一种使用计算机预测复杂系统未来状态的方法。模拟最初是在第二次世界大战的最后几天为军事目的而开发的,现在已遍布人类社会和经济领域,为决策者提供了一个非凡的水晶球,不仅可以预测下周的天气,还可以预测飞机在不同天气模式下飞行时的表现、新药对新疾病的有效性以及未来电池中新材料的行为。计算机模拟是在计算机上执行的数学建模过程,旨在预测现实世界或物理系统的行为或结果。 1 模拟通常通过将空间(例如北美)划分为多个小单元来配置,每个小单元保存一组值(例如温度和压力)以及一组本地规则,用于更新下一个时间步骤的单元(例如,基于单元和相邻单元的当前温度和压力,一分钟后的温度/压力)。模拟运行以测量的输入(温度/压力)为种子,并反复应用其规则来随时间更新模拟系统。更准确的输入数据、更小的单元和更好的规则可以实现更高保真度的模拟(例如,下周而不是明天的良好天气预报)。计算机模拟的使用现在在社会上如此普遍,毫不夸张地说,美国和国际的持续繁荣、安全和健康在一定程度上取决于模拟能力的持续改进。如果我们能够预测两周后的天气,指导新病毒性疾病新药的设计,或者管理将生产成本和时间降低一个数量级的新制造工艺,情况会怎样?如果我们能够预测人类的集体行为,例如,在自然灾害期间对疏散请求的响应,或劳动力对财政刺激的反应,情况会怎样? (另请参阅 CCC Quad 关于疫情信息学的配套论文,其中讨论了
大规模脑成像数据集的一个主要目标是提供用于研究异质弹出的资源。从这些数据集中为各个受试者提供功能性脑网络的表征将具有预测认知或临床特征的巨大潜力。我们第一次提出了一种技术,即概率的功能模式(sprofumo),该技术可扩展到英国生物库(UKB),有预期的100,000名参与者,并且在个人和人群中层次估算了层次的功能性脑网络,同时对两种信息之间的双向流量进行了影响。使用仿真,我们显示了模型的效用,尤其是在涉及显着的跨主题可变性的情况下,或者需要在网络之间划定细粒度的差异。随后,通过将模型应用于4999名UKB受试者的静止状态fMRI,我们将静止状态网络(RSN)绘制为单个受试者,其详细范围比以前在UKB(> 100 rsns)中可能绘制了,并证明这些RSN可以预测somecorimotor andsocorimotor and somecorimotor and Emperife and Elighe colesions and Level Consoge。此外,我们证明了该模型的几个优点,而不是独立的组件分析与双重回归(ICA-DR)相结合,尤其是在估计RSN的空间配置和认知性状的预测能力方面。所提出的模型和结果可以为将来从大数据中对个性化的脑功能纤维进行调查打开新的门。
在整个食品价值链中,从农场到零售,采购乳制品、牛肉和猪肉的公司面临着不同程度的甲烷相关气候风险,这取决于公司提供的产品。对于金融机构而言,了解哪些食品公司面临的甲烷暴露程度最高,对于管理气候风险至关重要。下一节将概述食品行业格局,揭示该行业中哪些子行业在其供应链中存在严重的牲畜甲烷暴露。(参见第10页的图表。)投资者和贷款机构可以利用这些洞察,更好地识别优先投资公司,并利用合作机会。包装食品和肉类包装食品和肉类公司面临的甲烷排放风险各不相同,具体取决于其生产产品的多样性。
生成人工智能(AI)聊天机器人(例如Chatgpt)在许多日常生活领域都迅速获得了知名度,甚至引发了有关潜在的“ Chatgpt成瘾”的学术辩论。”在整个历史上,新的技术科学一直与广泛的关注和“道德恐慌”有关,尤其是当他们的采用突然采用并涉及日常功能的重大变化时。因此,研究人员检查了对Chatgpt的大量使用是否可以被视为令人上瘾的行为也就不足为奇了。到目前为止,已经开发了至少四个测量Chatgpt成瘾的量表,所有这些都在使用药物使用障碍标准后构建。绘制与以前病态行为的病例相似之处,我们警告不要标记并定义密集或习惯性聊天机器人作为成瘾行为。要将行为标记为上瘾,必须有令人信服的证据表明负面后果,控制障碍,心理困扰和功能障碍。但是,现有关于使用ChatGPT或其他对话AI机器人有问题的研究未能提供如此强大的科学证据。因此,有必要谨慎行事,以避免(过度)病理学,侵害性或不必要的治疗方法,并过度调节工具,这些工具在以正念和调节的方式使用时具有许多好处。
已测试至少20 nt。探针可以用3´或5´生物素/Desthiobiotin亲和力组设计,用于链霉亲和素富集(NEB#S1421)。为了获得最佳结果,受保护的DNA:RNA杂交区应为4或5个核苷酸
