摘要:A ffi 体分子是放射性核素分子成像中研究最多的一类工程化骨骼蛋白 (ESP)。使用放射性金属直接标记的 A ffi 体分子进行靶向放射性核素治疗的尝试因肾脏中放射性的高吸收和滞留而受到阻碍。已经实施了几种有希望的策略来规避这个问题。在这里,我们研究了是否可以使用针对重吸收系统不同成分的药理学方法来降低肾脏对 [ 99m Tc]Tc-Z HER:2395 A ffi 体分子的吸收。与对照组相比,预先注射丙磺舒、呋塞米、甘露醇或秋水仙碱对肾脏的放射性吸收没有影响。与对照组相比,预先注射马来酸和果糖的小鼠肾脏相关活性分别降低了 33% 和 51%。放射自显影图像显示,注射 [ 99m Tc]Tc-Z HER2:2395 后活性的积累在肾皮质中,马来酸和果糖均可显著降低活性。本研究结果表明,使用马来酸和果糖进行药物干预可有效减少肾脏对 a 体分子的吸收。一种可能的机制是肾小管细胞破坏了 ATP 介导的细胞吸收和 a 体分子的内吞过程。
摘要:本文,提出了仅使用办公级工具(即卷到滚动热压印)将激光生产的氧化石墨烯(RGO)在柔性聚合物上的策略首次证明其直接生物电动分析的有效性。这种直接,可扩展和低成本的方法使我们能够克服生物分析设备中激光诱导的RGO膜的整合的极限。激光生产的RGO已使用简单的滚动层型(PET,PVC和EVA)热压到不同的聚合物底物(PET,PVC和EVA);通过形态化学和电化学表征将获得的TS-RGO膜与本机RGO(未转移)进行了比较。尤其是,已经研究了酶对催化过程的影响,研究了果糖脱氢酶(FDH)和TS-RGO传感器之间的直接电子转移(DET)反应。在TS-RGO传感器之间观察到了显着的差异。事实证明,PET是支持激光诱导的RGO转移的选择性底物,从而保留了天然材料的形态化学特征并返回降低的电容电流。值得注意的是,TS-RGO使用非常低量的FDH单元(15 MU)确保上催化性。最终,通过低成本台式技术制造了基于TS-RGO的第三代完整酶传感器。ts -rgo PET表现出比天然RGO优于的生物分析性能,使得敏感(0.0289μa cm -2μm -1 -m -1)且可重现(RSD = 3%,n = 3)D-在纳米摩尔水平下确定果糖(LOD =0.2μm)。ts-rgo的利用性作为一个需要的设备证明了 ts-rgo的可利用性。 关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器ts-rgo的可利用性。关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器
高果糖喂养饮食引起的II型糖尿病大鼠。2010。2(3):456-464,国际药房与技术杂志2(3):456-464 2010 0975-766X 3。在愈伤组织诱导和悬浮培养的体外研究
在最近的一项研究中,我们描述了发生在小鼠模型和转录偶联和全球基因组核苷酸切除修复受损(分别为 TC-NER 和 GG-NER)患者标本中的代谢重排。在这里,我们描述了一种机制,将 DNA 修复缺陷导致的转录停滞与细胞内 ATP 水平增强联系起来,后者反过来变构抑制糖酵解酶 ATP 依赖性 6-磷酸果糖激酶(Pfk,最为人所知的是磷酸果糖激酶)通过戊糖磷酸途径(PPP)重新路由葡萄糖。PPP 的增强本质上与 NADPH 还原当量的产生增加有关——这些还原当量是在途径的氧化分支中产生的——在我们的实验系统中,氧化剂种类和/或内源性氧化还原酶活性的比例并不相符,因此最终导致还原应激 1(图 1A)。
印度尼西亚是一个具有丰富生物多样性的热带气候的国家。在该国发现了各种类型的蜜蜂,包括Trigona Bees,其蜂蜜提供了许多健康益处。这项研究旨在分析Tetragonula biroi在印度尼西亚南苏拉威西省Soppeng Regency生产的Trigona蜂蜜的营养和植物化学含量。将蜂蜜样品直接从蜂箱中提取,通过实验室测试进行过滤和检查。这项研究的结果表明,与其他维生素相比,Soppeng的Trigona蜂蜜的pH值低(4.5)和高维生素C含量。钙含量高于镁和锌,而其高多酚含有类黄酮和抗氧化剂。Trigona Honey表示26.67%的水含量在印尼国家标准(SNI)的可接受范围内。Trigone蜂蜜的糖含量表示6.99%W/W葡萄糖,12.96%W/W果糖和果糖/葡萄糖比为1.85。
考生应能识别单糖(分子式 - C n (H 2 O) n )的例子,包括:丙糖(甘油醛)、戊糖(核糖、脱氧核糖)和己糖(α- 和 β- 葡萄糖、果糖、半乳糖)。考生应能识别双糖(分子式 - C 12 H 22 O 11 )的例子,包括:蔗糖(葡萄糖-果糖)、麦芽糖(α- 葡萄糖 - α- 葡萄糖)和乳糖(葡萄糖-半乳糖)。考生应能识别出以下多糖的例子:淀粉,α-葡萄糖的聚合物(由直链淀粉和支链淀粉组成),糖原,α-葡萄糖的聚合物(支链结构),纤维素,β-葡萄糖的聚合物和几丁质,β单体的聚合物,其中一些-OH基团被含氮的乙酰胺基团取代。纤维素和几丁质是结构相似的多糖,相邻的单体彼此扭转180°,链之间形成氢键,形成微纤维。考生应能将这些分子的性质和结构与其功能联系起来。这应包括溶解度、强度、能量含量和渗透效应。
几代人有很长的辩论:“蜂蜜是否比精制糖更好?什么是健康的选择”?从科学上讲,除了其已知的营养外,蜂蜜还表现出抗菌,抗炎和抗癌特性。现代研究强调了其益生元活性,心血管益处以及在管理糖尿病和促进伤口愈合中的作用。蜂蜜比精制糖的主要优点包括其较低的卡路里含量,较低的血糖影响以及许多长期的健康益处,使其成为许多饮食中精制糖的更健康替代品。蜂蜜和精制糖都由葡萄糖和果糖的组合组成,但存在一些差异。在精制糖(来自甜菜或甘蔗)中,葡萄糖和果糖被结合在一起形成蔗糖,在蜂蜜(约25种不同的寡糖)中,它们主要彼此独立。关于蜂蜜的消化率,蜂蜜与精制糖不同,因为蜜蜂添加了将蔗糖分为两种简单的糖,果糖和葡萄糖。这些糖直接被我们的身体吸收,并且更容易消化。
蔬菜,谷物和水果是富含纤维的食物,具有有益和营养作用,因为它们的消费会减少退行性疾病的发作,尤其是心血管疾病的发作。在纤维,菊粉,寡糖或果糖糖(FOS)之间是最好的研究。inulin是覆盖所有线性β(2-1)果糖的通用术语,具有不同程度的聚合。在这篇评论中,在不同的强化食品中考虑了二氨蛋白作为饮食纤维,功能,健康益处,分类,类型及其在食品行业中的应用的重要性。inulin已被用来提高产品作为甜味剂的营养和健康特性,并替代了脂肪和碳水化合物,提高了营养价值并降低了血糖指数,并没有损害产品的味道和浓度。菊粉的分构和益生元作用已得到很好的确定,结肠发酵二氨蛋白型果糖,以产生重要的局部和全身作用,以产生短链脂肪酸。添加了与每日食物的不同程度的聚合添加,以生产强化意大利面和面包的生产,并且还报道了对感官,技术和有机精神的影响,甚至还报道了无麸质面包的影响。
发酵是开发可可豆的身体素质特征的关键,因为代谢物的动态变化对口味和香气具有重大影响,因此已经研究了此过程的修改。在这项研究中,CCN-51可可豆的粘液被百香果(Passiflora Edulis)和车前草(Musa Paradisiaca L.)果肉的混合物代替,并在自发性地进行农场接种后进行了该混合物的受控发酵。评估了发酵五天期间的物理化学变化和相关性。在过程结束时,在发酵质量中达到47ºC,在子叶中记录了5.64的温度。在最初的48小时内,柠檬酸和果糖在发酵结束时分别比发酵开始时低71%和41.17%。作为在发酵过程中消耗的葡萄糖和果糖,乙酸和乳酸水平从第二天开始增加,在22.48 mg/g和16.01 mg/g过程结束时达到值。相比之下,在比较每天发酵时,气体学参数并未显示出更大的可变性。本研究中产生的数据和结果将有助于了解随着发酵阶段纳入纸浆水果而实现的可能的感觉改善的知识。