在结构键中,粘附器和粘合剂之间的界面几乎是二维的,使其容易受到微小污染的影响,这可能会导致弱键。诸如联邦航空管理局(FAA)等监管组织通常需要次要键入初级结构中的冗余负载路径,以减轻无法证明债券绩效的。为了解决这个问题,NASA融合航空解决方案(CAS):复合材料的粘合无粘合键(Aerobond)项目正在研究重新计算的航空航天环氧树脂 - 摩trix树脂,以在二级键合和固定过程中启用关节界面上的树脂的反射和扩散。组装过程中基质树脂的反流和混合可以消除界面处的材料不连续性,从而消除了在接近二维边界处键对粘合性能的依赖性。Aerobond工艺开发评估了许多参数,包括所使用的材料,环氧树脂的化学计量偏移,治愈的时间和温度以及每个层的厚度。没有原位过程监测,在机械测试完成之前,测试文章的状况尚不清楚。本文描述了使用原位超声检查系统来监视使用Aerobond技术组装的两个复合零件的连接。这项工作通过在整个治疗周期的关节处测量波反射或缺乏波浪反射来量化界面。此外,结果表明何时发生环氧树脂的回流和固化。通过使用最近开发的原位检验方法与移动超声传感器,可以在高分辨率的大部分关节上获得局部结果。
摘要:立体光刻已成为以高精度制造复杂结构的最新方法。使用树脂的组件的性质较差。当前的研究研究了SLA技术制造的纳米石材复合材料的性能的改善。比较普通树脂和0.2%,0.2%,0.5%,1%,3%和5%(w / v)的纳米含石与紫外线可策展的树脂的特性。进行了各种分析,包括粘度,紫外线镜检查,水分含量,吸水,凝胶含量,拉伸,弯曲,硬度测试和显微镜表征。实验的结果表明,测试的样品的每个百分比的结果(例如样品特性)的结果差异,这表明添加纳米石膏的百分比越大(5%),样品将会出现,并且会出现较少的光。粘度测试表明,添加到树脂中的纳米石膏的百分比越大,粘度越大。紫外线光谱测试产生了有关电子结构和分子结构的信息,例如它们的组成,纯度和集中。从水分含量分析中进行的观察发现,纳米含量较高的标本中的水分含量影响了物理和机械性能,从而导致更轻松的翘曲,破裂,降低强度等。拉伸和弯曲测试表明,添加纳米石膏的百分比越大,对物理和机械性能(包括骨折)的影响越大。然而,当添加不同百分比的纳米石膏时,某些测试并未始终产生样品之间的显着变化,这在化学耐药性测试中尤其明显。这项研究为通过SLA方法制造的纳米石材复合材料的应用提供了宝贵的见解。
更深入地了解色谱吸附剂的纳米级和中观级结构以及介质中蛋白质的分布,对于从机制上理解使用这些材料的分离过程至关重要。使用传统技术来表征这种规模的介质结构和其中的蛋白质吸附具有挑战性。在本研究中,我们提出了一种新颖的树脂表征技术,该技术能够在典型的色谱条件下原位测量树脂内吸附蛋白质层的结构。设计并制造了一个石英流通池,用于小角度中子散射 (SANS),以便在单克隆抗体吸附过程中测量二氧化硅基蛋白质 A 色谱树脂的纳米级到中观级结构。我们能够使用对比匹配方法实时检查不同蛋白质负载和洗涤缓冲液下树脂的孔间(˜ 133 nm)和孔径(˜ 63 nm)相关性以及平面吸附抗体分子(˜ 4.2 nm)相关性。当将 0.03 M 磷酸钠与 1 M 尿素和 10% 异丙醇缓冲液(pH 8)作为洗涤缓冲液引入系统时,它会破坏系统的秩序,导致吸附抗体部分展开,这可以通过平面蛋白质相关性的丧失来证明。该方法为研究色谱树脂内的纳米级结构和配体固定提供了新方法;也许最重要的是了解在复制色谱柱的样品环境中,在不同流动相条件下吸附蛋白质在介质中的原位行为。
姜油树脂中主要有效成分是姜辣素和姜烯酚。姜辣素具有多种药理活性,包括抗炎、抗氧化和镇痛作用。然而,姜辣素对热敏感,在高温下会降解,这限制了其在食用生姜时的功能效果。为了克服这些限制,我们进行了姜油树脂封装工艺,以努力改善其物理和功能特性,同时增加向体内的输送量。在本研究中,封装过程采用离子凝胶化方法进行,结果为珠子的形式。海藻酸盐用作姜油树脂的包封材料。使用 FTIR、SEM 分析、崩解测试对干珠进行表征,并通过紫外可见分光光度法评估包封效率。研究结果表明,以海藻酸盐为高分子材料,CaCl2为偶联剂,采用离子凝胶法可以合成载姜油树脂的海藻酸盐珠。本研究测试的姜油树脂浓度为0.9%、0.7%、0.5%和0.3%。当姜油树脂浓度为0.7%时,包封率最高,为72.480%。表面形貌分析表明,海藻酸盐珠具有粗糙多孔的质地,海藻酸盐聚合物中有可见的褶皱。此外,干珠的崩解时间少于30分钟。
研究了液晶环氧树脂 (LCER) 的蠕变行为,并将其与由相同环氧单体制备的非 LCER 进行了比较。使用 Burgers 模型评估实验数据以解释液晶 (LC) 相的增强作用。使用时间-温度叠加原理预测材料的长期性能。结果表明,在树脂网络中引入 LC 相可以降低材料的蠕变应变和蠕变应变率,尤其是在高温下。从模拟中提取的参数表明,LC 相的存在增强了树脂的瞬时弹性、阻滞弹性和永久流动阻力。提出用刚性填料效应和交联效应来解释增强机制。
- Synaqua® 生物基水性树脂的可再生基含量高达 97%,将醇酸树脂涂料的性能与水性配方的优势相结合。这项创新通过减少有害物质的排放和最小化碳足迹来提高涂料的性能。- Crayvallac® 高性能生物添加剂将性能和可持续性与其蓖麻衍生物和生物基聚酰胺添加剂相结合。这些流变改性剂的生物含量从 60% 到 100%,有助于提高循环性并促进非化石原料的使用。该公司还将逐步推出粉末和丙烯酸基生物质量平衡解决方案作为补充途径,以支持我们的客户提供高性能解决方案、更多的循环采购和减少碳足迹的解决方案。气候意识技术,打造凉爽表面 阿科玛提供一系列凉爽屋顶技术,以提高室内热舒适度并降低空调消耗。这些包括两种树脂的独特组合,Kynar Aquatec ®,一种超耐用的反光涂料和 Encor ®,一种用于防水和耐久性的丙烯酸弹性乳液,含有 2 种添加剂,Coapur ™ PU 增稠剂可提高兼容性和控制性,Coadis ™ 是一种分散剂,可提高白度和稳定性。节能解决方案 随着行业面临能源成本上升、排放法规越来越严格以及向低碳密集型应用转变,阿科玛提供节能解决方案,采用 Sartomer® UV-LED 和 EB 固化技术,这些技术是低 VOC 和低碳密集型涂层技术。