Houshmand D. 等人,2017 年。校准参数和水资源估计对不同目标函数和优化算法的敏感性。水,9,384。https://www.mdpi.com/2073-4441/9/6/384
6.1 校准 ................................................................................................................................................................................ 30 6.1.1 设置在线校准参数 ................................................................................................................................................ 30 6.1.2 获取平均系数 ................................................................................................................................................ 31 6.1.3 管理校准系数 ................................................................................................................................................ 32 6.1.4 管理双重校准系数 ............................................................................................................................................. 35 6.2 调整亮度 ................................................................................................................................................................ 37 6.3 校正较亮像素 ............................................................................................................................................................. 42 6.4 设置高级色彩 ............................................................................................................................................................. 44 6.5 调整屏幕效果 ............................................................................................................................................................. 47 6.6 设置图像增强引擎 ............................................................................................................................................. 48 6.6.1 屏幕校准........................................................................................................................................... 48 6.6.2 快速设置 ................................................................................................................................................ 54
设备特定参数:法律相关参数,其值取决于各个设备。设备特定参数包括校准参数(例如测量范围的调整或其他调整或修正)和配置参数(例如最大值、最小值、测量单位等)。它们只能在设备的特殊操作模式下调整或选择。设备特定参数可分为必须受保护(不可更改)的参数和可分配给授权人员的参数,例如可供设备所有者或产品销售商访问(可设置参数)。
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
设计和实施系统是基于与项目目标一致的要求研究构建的。图1说明了工作区域。选择了Logitech Brio 100相机的分辨率,视野,连接性和价格。使用OPENCV库编写的算法,旨在测量托盘尺寸,检测缺陷并验证EPAL徽标。使用Checkerboard方法进行摄像机校准,其中处理不同角度的图像以计算校准参数。选择了Raspberry Pi 4来集成硬件和软件。为了验证系统的性能,选择了托盘来测试其测量大小,检测缺陷并验证Epal徽标
摘要 — 在过去的几年中,量子计算 (QC) 引起了计算机科学家的兴趣,因为它具有量子加速、解决 NP 难题的可能性以及实现更高的计算能力。然而,减轻每个量子设备内部噪声的影响是一个迫在眉睫的挑战。这些变化为研究校准参数对每个量子比特的个体特征的影响提供了新的机会。在本文中,我们基于校准数据和单个设备的特性研究了嘈杂的中型量子 (NISQ) 计算机的时间行为。具体来说,我们收集了过去两年 IBM-Q 机器的校准数据,并将量子误差鲁棒性与 IBM-Q 机器的处理器类型、量子拓扑和量子体积进行比较。索引术语 — 量子计算、量子特性、量子时间研究、量子误差
背景指南提供了实现机载相机系统度量校准的步骤,并规定了构建现场、交叉路口校准和测试范围。这些步骤基于胶片和数字航空相机系统的成功度量校准。为了准确校准相机系统,在数据收集飞行之前、期间和之后必须遵循几个步骤。这些指南最初仅限于矩形框架相机,而不是推扫式相机。校准飞行后应准备一份校准结果报告,包括校准参数及其精度。随着胶片相机被数码相机取代,这些新指南将对遥感界有所帮助。指南包括 Z/I DMC II 数码相机和 Z/I TOP 胶片相机的现场校准示例以及典型校准范围。这些示例包括航空系统校准现场方法的结果,包括总结分析和校准报告。总之,完成机载相机系统校准所需的步骤如下:
摘要 — 多通道校准对于检测移动目标并准确估计其位置和速度至关重要。本文介绍了一种快速有效的沿轨多通道系统校准算法,特别是针对时空自适应处理 (STAP) 技术。所提出的算法校正了接收通道的相位和幅度偏移,还考虑了沿斜距和方位角时间的多普勒质心变化(例如由大气湍流引起)。多普勒质心变化的知识对于准确的杂波协方差矩阵估计尤其重要,这是 STAP 有效抑制杂波所必需的。重要的校准参数和偏移量直接从距离压缩训练数据中估计。基于使用 DLR 机载系统 F-SAR 获取的真实多通道 X 波段雷达数据对所提出的算法进行了评估,并与最先进的数字通道平衡技术进行了比较。实验结果表明,所提出的校准算法在实时应用中具有潜力。
摘要 — 几十年来,对于从 4K 到室温以上的硅载流子,一直没有开发出统一的模型。本文提出了一个统一的未掺杂硅低场和高场迁移率模型,分别针对 8K 到 300K 和 430K 时<100>和<111>方向的电子以及 6K 到 430K 时<100>方向的空穴。研究发现,Canali 高场饱和模型足以拟合<111>实验数据,但不能拟合<100>数据,这是由于各向异性引起的平台期和负差速度。因此,使用了改进的 Farahmand 模型。为了允许在各向异性模拟中进行参数插值,还针对<111>方向校准了改进的 Farahmand 模型。然后使用该模型预测 4K 下未掺杂 Si 中电子和空穴的迁移率,当有可靠的实验数据可用于 TCAD 模型开发时,该迁移率可作为初始校准参数。