DNA 梳理和 DNA 扩散是研究全基因组 DNA 复制叉动态的两种主要方法,它们将标记的基因组 DNA 分布在盖玻片或载玻片上进行免疫检测。DNA 复制叉动态的扰动会对前导链或滞后链的合成产生不同的影响,例如,在复制被两条链中的一条上的病变或障碍物阻断的情况下。因此,我们试图研究 DNA 梳理和/或扩散方法是否适合在 DNA 复制过程中分辨相邻的姐妹染色单体,从而能够检测单个新生链内的 DNA 复制动态。为此,我们开发了一种胸苷标记方案来区分这两种可能性。我们的数据表明,DNA 梳理可以分辨姐妹染色单体,从而可以检测链特异性改变,而 DNA 扩散通常不能。这些发现在从这两种常用技术获得的数据解释 DNA 复制动态时具有重要意义。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
由于 PARP 抑制剂能够特异性地杀死无法通过同源重组修复 DNA 的肿瘤,因此聚(ADP - 核糖)聚合酶 1 (PARP1) 已成为癌症治疗的中心靶点。DNA 损伤后,PARP1 会迅速与 DNA 断裂结合并触发 ADP - 核糖基化信号。ADP - 核糖基化对于将各种因子募集到损伤部位以及及时将 PARP1 从 DNA 断裂中分离非常重要。事实上,在 PARP 抑制剂存在的情况下,PARP1 会被困在 DNA 断裂处,这是这些抑制剂细胞毒性的潜在机制。因此,任何影响捕获的细胞过程都被认为会影响 PARP 抑制剂的效率,可能导致接受这些药物治疗的患者产生获得性耐药性。DNA 损伤后有许多 ADP - 核糖基化靶点,包括 PARP1 本身以及组蛋白。虽然最近的研究报告称 PARP1 的自我修饰会促进其从 DNA 损伤中释放,但其他 ADP - 核糖基化蛋白对这一过程的潜在影响仍不清楚。本文,我们证明组蛋白 ADP - 核糖基化对于 PARP1 从损伤中及时消散也至关重要,从而导致细胞对 PARP 抑制剂产生耐药性。考虑到 ADP - 核糖基化与其他组蛋白标记之间的串扰,我们的研究结果为开发更有效的 PARP 抑制剂驱动的癌症疗法开辟了有趣的前景。
摘要:核糖体病是一组罕见疾病,其中遗传突变在核糖体生物发生或功能中,给定特定表型引起缺陷。核糖体蛋白质以及核糖体生物发生所需的其他多个因素(rRNA加工,亚基的组装,导出到细胞质)可能会在核糖瘤病中产生。尽管需要所有细胞类型的核糖体,但这些疾病主要导致组织特异性障碍。取决于核糖瘤的类型及其致病性,有许多潜在的治疗靶标。目前的手稿将回顾我们对核糖病的了解,讨论当前的治疗方法,并根据最近的研究介绍新的治疗观点。钻石 - 布拉克凡贫血,目前在类固醇之前接受了输血治疗,可以用一系列新化合物来治疗,主要作用于贫血,例如L-柠檬氨酸。treacher柯林斯综合征可以通过各种治疗来管理,但最近已显示,MG132或硼替佐米的蛋白酶体抑制作用可以改善颅骨骨骼畸形。出生后还可以在药理学治疗核糖体病带来的发育缺陷。因此,可以在不使用多种治疗(例如手术和移植)的情况下治疗某些核糖瘤病。核糖体病仍然是寻找新的治疗方法的开放式领域。
摘要在过去25年中,在LMNA基因中具有突变的各种实验模型中已经报道了核包膜(NE)扰动。尽管LMNA突变的NE扰动是横纹肌肉损伤的基本特征的假说,已获得广泛的接受,但由NE损伤引起的分子序列造成的分子序列以及它们如何基于疾病发病机理,例如心肌病(LMNA心脏疾病)仍然很差。最近,我们通过在成人心脏中采用心肌细胞 - 特异性LMNA缺失来阐明这种结果。,我们在心脏功能恶化之前观察到广泛的NE扰动,并在核周空间中旁边损害。高尔基体受到了特别的影响,导致细胞保护应激反应可能会因高尔基体的进行性恶化而破坏。在这篇综述中,我们讨论了LMNA心肌病的病因,并将核周的“井肌创伤”作为NE损伤和疾病发病机理之间的联系。
摘要:人类 80S 核糖体是负责蛋白质合成的细胞核蛋白纳米机器,在致癌蛋白的癌症转化过程中受到极大影响,并为癌性增殖细胞提供蛋白质和生物质。事实上,癌症与核糖体生物合成增加有关,在核糖体病中发现了几种核糖体蛋白基因的突变,核糖体病是一种先天性疾病,表现出较高的癌症风险。因此,核糖体及其生物合成代表了有吸引力的抗癌靶点,人们正在开发多种策略来识别有效且特异的药物。高三尖杉酯碱 (HHT) 是目前临床上用于癌症治疗的唯一直接核糖体抑制剂,尽管许多经典化疗药物似乎也会影响蛋白质合成。在这里,我们回顾了人类核糖体作为癌症医学靶点的作用,以及功能和结构分析如何与新抑制剂的化学合成相结合产生协同作用。本文还讨论了致癌核糖体可能存在的问题。新兴的观点是,以人类核糖体为靶点不仅可以干扰癌细胞对蛋白质合成的依赖,并可能诱导其死亡,而且可能对降低高周转率的致癌蛋白水平(MYC、MCL1)也大有裨益。低温电子显微镜 (cryo-EM) 是一种先进的方法,可以可视化人类核糖体复合物与因子和结合抑制剂,从而提高我们对它们功能机制模式的理解。低温电子显微镜结构可以极大地帮助新型药物设计策略的基础阶段。一个目标是确定针对癌症核糖体的新特异性和活性分子,例如众所周知的核糖体抑制剂环己酰亚胺的衍生物。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 28 日发布。;https://doi.org/10.1101/2025.01.02.630345 doi:bioRxiv 预印本
ETS 转录因子是一个蛋白质家族,由一组在从后生动物到人类的进化过程中保守的基因编码 [1,2]。迄今为止,已在脊椎动物中描述了该家族的 28 个成员,分为 12 组 [3]。这些转录因子的特点是具有一个高度保守的有翼螺旋-转角-螺旋 DNA 结合域 (DBD),该域可识别位于靶基因启动子中的具有中央 5′-GGA(A/T)-3′ 核心的特定 DNA 元素,称为 ETS 结合位点 (EBS)。尽管所有 ETS 家族成员都共享相同的 DBD,但每个 ETS 转录因子都有自己的 DNA 结合特性,这些特性受到严格控制以确保特定的生物学作用。具体而言,ETS 转录因子的 DNA 结合特性可通过以下方式彼此区分:(i) EBS 序列识别的细微差异 [4]、(ii) 与不同结合伙伴的特异性相互作用,或 (iii) 调节其对 DNA 亲和力的差异性翻译后修饰 [3]。尽管如此,ETS 转录因子在许多细胞类型(例如造血细胞、乳腺和前列腺组织)中广泛共表达,并且这些细胞中每种因子的生物学特异性仍不清楚 [3]。
PIWI 相互作用 RNA (piRNA) 是一类对生育至关重要的小型非编码 RNA。在成年小鼠睾丸中,大多数 piRNA 源自缺乏注释开放阅读框 (ORF) 的长单链 RNA。在 piRNA 前体的切割过程中,piRNA 序列的定义机制仍然难以捉摸。在这里,我们展示了 80S 核糖体翻译 piRNA 前体的 5' 近端短 ORF (uORF)。然后,MOV10L1/Armitage RNA 解旋酶促进核糖体易位到 uORF 下游区域 (UDR)。核糖体结合的 UDR 是 piRNA 加工机制的靶标,经过加工的核糖体保护区成为 piRNA。核糖体和 piRNA 前体之间的双重相互作用模式决定了 uORF 上 piRNA 生物合成的不同要求
方法:我们计划进行一项网络荟萃分析,其中包括对铂敏感型卵巢癌患者进行尼拉帕尼、鲁卡帕尼、奥拉帕尼或维利帕尼的随机、双盲、对照 III 期试验。主要结果是无进展生存期或总生存期。次要结果是治疗中出现的不良事件的 ≥ 3 级。将通过 PubMed、Embase、Cochrane 图书馆、ClinicalTrials.gov 和世界卫生组织 (WHO) 国际临床试验注册平台检索 1990 年至 2023 年期间的已发表和未发表的研究。我们将使用 STATA V.14.0 进行所有分析,并使用 RevMan 软件报告纳入研究中的偏倚风险。我们将使用 GRADEpro GDT 软件在线版本确定证据质量。这只是一份协议描述。结果和结论有待完成。本研究将基于已发表的研究,因为不会进行原始数据收集,因此无需进行正式的伦理评估。网络图和荟萃分析将用于比较所有 PARP 抑制剂。它们的排名将采用排名图、累积排名曲线下表面和平均排名。