蘑菇栽培中最重要的方面之一是基质消毒。如果纤维素材料中的竞争性微生物没有被杀死,产量就会受到影响。通常使用蒸汽消毒来对蘑菇基质进行消毒。产生蒸汽需要大量的能量。能源来自天然气、柴油、电力或木柴。使用蒸汽会产生大量的运营成本,而且这个过程很耗时。需要开发一种更有效的臭氧灭菌技术来改善蘑菇基质灭菌。这种技术应该能够每天对大量基质进行灭菌,使种植者能够生产和销售更多的蘑菇,从而增加他们的收入。本文报道了一种新的基于臭氧的蘑菇基质灭菌技术,该技术在生产和时间方面更有效。这涉及将不同浓度的臭氧注入蘑菇基质,并进行分析以验证臭氧在蘑菇工业中的使用。分析了对整个基质体积进行灭菌所需的臭氧水平和处理时间。结果揭示了对整个蘑菇基质进行灭菌的最佳臭氧浓度和最佳时间。与传统的蒸汽灭菌技术相比,臭氧处理耗时更少。因此,从长远来看,它可以增加蘑菇基质的产量并降低成本。
1 Department of Biology, Utah State University, Logan, Utah 84321-5305, USA, 2 IBBR CNR – Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146 Palermo, Italy, 3 Department of Agronomy, Animals, Food, Natural Resources, and Environment, University of Padova, Viale dell'Universita 16, 35020 Legnaro, Padua, Italy, 4 UMR Ecophysiologie et G enomique Fonctionnelle de la Vigne, University of Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leyssottes, 33882 Villenave d'Ornon, France, 5 ENSA, Rue Hassan Badi, Belfort, El Harrach 16000, Algeria, 6 Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy, 7 Max普朗克分子植物生理学研究所,波茨坦-戈尔姆 14476,德国,帕多瓦大学生物系,via U. Bassi 58b,35131 帕多瓦,意大利
FSVO检查了提交的文件,并确定了Bos Taurus(Angus)细胞培养的栽培“小牛排”的新食物状况。这些文件显示,在瑞士或欧盟成员国1997年5月15日之前,该食品不用于人类消费,并根据第15条第15款。第1条关于食品和公用事业条款的条例(Fuao; SR 817.02),因此属于新食物的定义,尤其是在类别中:
提出利用有效微生物(EM)对油棕空果串(EFB)栽培草菇进行预处理以提高产量。观察不同EM剂量对菌丝生长和产量的影响。处理采用两个参数的组合:堆肥时间(5 天 (T1)、10 天 (T2) 和 15 天 (T3))和 EM 剂量(0% (E1)、10% (E2)、20% (E3) 和 30% (E4)。同时分析了 EFB 的成分以比较预处理前后的变化。结果显示,与其他处理相比,20% 和 30% 的 EM 预处理可显著加快菌丝生长速度。在 T2E4(10d,30% EM)下观察到 V. volvacea 的最高产量,为 271.5±57.28 g 或生物效率 (BE) 为 9.11%。在 T1E3(5d,20% EM)下获得的子实体 (FB) 平均重量最高,为 14 g,而 T2E4(10d,30% EM)下的子实体平均重量最高,为收获的 FB 数量最多,为 42。在所有测试处理中,纤维素、半纤维素和木质素均减少。EM 剂量和堆肥时间均显著影响 V. volvacea 的产量。EFB 纤维是 V. volvacea 栽培的潜在底物。
在不断变化的气候情景下,草原保护和发展已成为赋予其生态系统服务功能可持续性的当务之急。通过有针对性地对本地草种进行基因改良,可以有效实现这些目标。据我们所知,关于在天然和半天然草原中普遍存在的非栽培草种(柳枝稷、野生甘蔗、草原大麦、狗牙根草、中国银草等)的基因编辑的研究成果非常少。因此,为了探索这一新颖的研究方面,本研究旨在将用于改良栽培草类尤其是甘蔗的基因编辑技术也用于非栽培草类。我们建议将甘蔗作为非栽培草类基因改良的典型作物的假设是,与其他栽培草类(水稻、小麦、大麦、玉米等)相比,甘蔗的多倍体和非整倍体导致基因编辑的复杂性。另一个原因是,考虑到高度的遗传冗余,已经开发和优化了甘蔗(x = 10 – 13)的基因组编辑方案。因此,据我们所知,本综述是第一项客观评估 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 技术在甘蔗中的概念和功能的研究,评估其高度多功能性、目标特异性、效率、设计简单性和多路复用能力,以探索针对生物和非生物胁迫对非栽培禾本科植物进行基因编辑的新研究视角。此外,甘蔗基因编辑面临的巨大挑战导致了 CRISPR 工具的不同变体(Cas9、Cas12a、Cas12b 和 SpRY)的开发,其技术性也得到了严格评估。此外,还强调了该技术在非栽培禾本科植物基因编辑过程中可能出现的不同局限性。
摘要 关键信息 我们建立了一种基于核糖核蛋白的CRISPR/Cas9无DNA基因组编辑方法在栽培番茄中应用,并获得了高突变率的转染原生质体再生突变植株。 摘要 近年来,基因组编辑作为一种研究和育种方法的应用为许多作物的性状改良提供了许多可能性。在栽培番茄(Solanum lycopersicum)中,迄今为止只建立了携带CRISPR/Cas9试剂的稳定的农杆菌介导转化方法。转染原生质体芽再生是基于核糖核蛋白的CRISPR/Cas9无DNA基因组编辑方法在栽培番茄中应用的主要瓶颈。在本研究中,我们报道了利用CRISPR/Cas9技术实现栽培番茄的无转基因育种方法,包括优化原生质体分离和克服转染原生质体芽再生障碍。结果表明,含0.1 mg/L IAA和0.75 mg/L玉米素的芽再生培养基为最佳激素组合,再生率可达21.3%。原生质体分离转染4个月后,成功获得高突变率的再生植株。获得的110株再生M 0 植株中,有35株(31.8%)同时发生SP和SP5G基因突变,SP或SP5G基因中至少一个等位基因的编辑效率高达60%。
他通过国际合作参与了大米基因组项目的研究,并为解密基因组做出了重大贡献,例如在大米中创建遗传图,并使用大米进行了全面的基因组信息,以阐明在生殖器官开发和生殖隔离中起作用的基因功能。此外,已经发现对从世界各地收集的栽培和野生水稻的基因组分析导致了水稻种植的起源以及目前在日本种植的Japonica物种的起源。此外,他已经开发并建立了一个系统,用于分发在热带和亚热带地区收集的大约1,700种野生水稻的物种,并促进了它们的多样性和进化研究,并且也一直在积极努力为多样化的水稻育种建立研究基金会,从而为工厂研究人员的发展提供了发展。这些结果为植物科学和植物遗传学的发展做出了巨大贡献,这导致了稳定的粮食生产。
作物野生近缘种是作物改良的宝贵等位基因来源,包括适应气候变化和新出现疾病。然而,由于连锁累赘,来自野生近缘种的基因渗入可能会对理想性状(包括产量)产生有害影响。在本文中,我们分析了野生基因渗入在栽培向日葵自交系中的基因组和表型影响,以估计连锁累赘的影响。首先,我们生成了七种栽培向日葵和一种野生向日葵基因型的参考序列,以及另外两种栽培品种的改良组装体。接下来,依靠之前从野生供体物种生成的序列,我们鉴定了栽培参考序列中的基因渗入,以及它们所包含的序列和结构变体。然后,我们使用岭回归最佳线性无偏预测 (BLUP) 模型来检验基因渗入对栽培向日葵关联作图群体中表型性状的影响。我们发现基因渗入给栽培向日葵基因库带来了大量序列和结构变异,包括 3,000 多个新基因。虽然基因渗入降低了蛋白质编码序列的遗传负荷,但它们大多对产量和品质性状产生负面影响。在栽培基因库中发现的高频率基因渗入比低频率基因渗入的影响更大,这表明前者可能是人工选择的目标。此外,来自亲缘关系较远的物种的基因渗入比来自栽培向日葵野生祖先的基因渗入更容易适应不良。因此,育种工作应尽可能集中在密切相关且完全兼容的野生亲属上。
1(7)Ratitae;或2(8)山羊。 3(b)该术语不包括:4(1)仅以相对较小的比例包含肉类或此类尸体的其他部分;或6(2)在历史上没有被消费者视为肉类食品行业的7种产品,并且在9条条件下,州兽医将8个定义作为一种肉类食品作为一种肉类食品。 13(c)该术语不包括栽培的肉类产品。 14第3节。 IC 15-17-5-6.5被添加到《印第安纳州法典》第15条中,作为新部分,如下所示[生效于7月16日1,2025]:sec。 6.5。 (a)一个标记肉类产品的人不得在明智地和故意将栽培的肉类产品18作为肉类产品中贴上17种。 19(b)如果使用以下所有内容,则将栽培的肉类产品错误地称为肉类产品20:21(1)耕种的肉类产品被广告为肉类22产品,但不满足IC 15-17-2-54下的肉类产品的定义23。 24(2)耕种的肉类产品是由25个正式机构出售或出售的。 26(3)栽培的肉类产品的标签为:包装的27(a)部分; 28(b)放在包裹上;或将29(c)放在存放栽培肉类30产品的容器上; 31并将栽培的肉类产品识别为肉类产品。 39(e)收到停止销售耕种40种产品的命令后,一个人可能不会:41(1)销售;或42(2)要出售;1(7)Ratitae;或2(8)山羊。3(b)该术语不包括:4(1)仅以相对较小的比例包含肉类或此类尸体的其他部分;或6(2)在历史上没有被消费者视为肉类食品行业的7种产品,并且在9条条件下,州兽医将8个定义作为一种肉类食品作为一种肉类食品。13(c)该术语不包括栽培的肉类产品。14第3节。IC 15-17-5-6.5被添加到《印第安纳州法典》第15条中,作为新部分,如下所示[生效于7月16日1,2025]:sec。6.5。(a)一个标记肉类产品的人不得在明智地和故意将栽培的肉类产品18作为肉类产品中贴上17种。19(b)如果使用以下所有内容,则将栽培的肉类产品错误地称为肉类产品20:21(1)耕种的肉类产品被广告为肉类22产品,但不满足IC 15-17-2-54下的肉类产品的定义23。24(2)耕种的肉类产品是由25个正式机构出售或出售的。26(3)栽培的肉类产品的标签为:包装的27(a)部分; 28(b)放在包裹上;或将29(c)放在存放栽培肉类30产品的容器上; 31并将栽培的肉类产品识别为肉类产品。39(e)收到停止销售耕种40种产品的命令后,一个人可能不会:41(1)销售;或42(2)要出售;32(c)董事会应调查一个人:33(1)出售的投诉;或出售的34(2); 35种培养的肉类产品将其品牌误认为是肉类产品。36(d)如果董事会有合理的理由相信一个人违反了37款(a)董事会可能会停止该人出售38种栽培肉类产品。
摘要 12 葡萄的驯化过程促进了所需性状的固定。与有性生殖相比,通过扦插进行葡萄的无性繁殖更容易保存这些基因型。尽管如此,即使是无性繁殖,由于基因组中潜在的遗传体细胞突变,同一葡萄园内也常常会出现不同的表型。然而,这些突变并不是影响表型的唯一因素。除了体细胞变异外,表观遗传变异也被认为是调节驯化过程中获得的表型变异的关键因素。这些表观等位基因的出现可能对葡萄的驯化产生了显著影响。本研究旨在调查驯化过程对栽培葡萄甲基化模式的影响。对栽培和野生种质进行了低代表性亚硫酸盐测序。结果显示,栽培葡萄 24 的甲基化水平高于野生葡萄。野生和栽培葡萄之间的差异甲基化分析共鉴定出 9955 26 个差异甲基化胞嘧啶,其中 78% 在栽培葡萄中高甲基化。功能分析表明,核心甲基化基因(在野生和栽培种质中持续甲基化的基因)与应激反应和萜类/异戊二烯类代谢过程有关。而呈现差异甲基化的基因与靶向过氧化物酶体的蛋白质、乙烯 31 调节、组蛋白修饰和防御反应有关。此外,我们的研究结果 32 表明,环境诱导的 DNA 甲基化模式至少部分受野生葡萄种质的原产地引导。总的来说,我们的研究结果 34 揭示了表观等位基因在葡萄驯化历史中可能发挥的关键作用。36