生成的AI模型,例如稳定的扩散,DALL-E和MIDJOURNEY,最近引起了广泛的关注,因为它们可以通过学习复杂,高维图像数据的分布来产生高质量的合成图像。这些模型现在正在适用于医学和神经影像学数据,其中基于AI的任务(例如诊断分类和预测性建模)通常使用深度学习方法,例如卷积神经网络(CNNS)和视觉变形金刚(VITS)(VITS),并具有可解释性的增强性。在我们的研究中,我们训练了潜在扩散模型(LDM)和deno的扩散概率模型(DDPM),专门生成合成扩散张量张量成像(DTI)地图。我们开发了通过对实际3D DTI扫描进行训练以及使用最大平均差异(MMD)和多规模结构相似性指数(MS-SSSIM)评估合成数据的现实主义和多样性来生成平均扩散率的合成DTI图。我们还通过培训真实和合成DTI的组合来评估基于3D CNN的性别分类器的性能,以检查在培训期间添加合成扫描时的性能是否有所提高,作为数据增强形式。我们的方法有效地产生了现实和多样化的合成数据,有助于为神经科学研究和临床诊断创建可解释的AI驱动图。
Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)
描述 在网络荟萃分析中实现一种新颖的频率学派方法,以生成临床相关的治疗层次结构。该方法基于治疗选择标准 (TCC) 和概率排名模型,如 Evrenoglou 等人所述。 (2024) < DOI:10.48550/arXiv.2406.10612 >。TCC 使用基于最小临床重要差异的规则来定义。使用定义的 TCC,首先将研究级数据(即治疗效果和标准误差)转换成偏好格式,指示治疗偏好(例如,治疗 A > 治疗 B)或平局(治疗 A = 治疗 B)。然后使用概率排名模型合成偏好数据,该模型估计每种治疗的潜在能力参数并生成最终的治疗层次结构。此参数表示每种治疗方法胜过网络中所有其他竞争治疗方法的能力。因此,能力评估值越大,排名就越高。
设计自由形式的光子设备是一个充满挑战的主题,因为结构性自由的高度。在这里,我们提出了一种新算法,该算法使用伴随灵敏度分析和扩散模型对光子结构进行操作。我们证明,将伴随梯度值整合到非授权过程中,可以生成高性能设备结构。我们的方法可以通过合并在遵循制造约束的合成图像上训练的扩散模型来优化少量模拟的结构。与常规算法相比,我们的方法消除了对复杂的二进制化和圆锥过滤器的需求,克服了本地Optima的问题,并提供了多种设计选项。尽管具有固有的随机性,但我们的算法稳健地设计了高性能设备,并且优于最先进的非线性算法。
对空气动力学设计的几何形状的优化通常依赖大量昂贵的模拟来评估并迭代地改善几何形状。可以通过提供具有接近所需要求的起始几何形状来减少模拟的数量,通常在提升和阻力,空气动力学矩和表面积方面。我们表明,生成模型有可能通过在大量模拟数据集上概括几何形状来提供这种开始的几何形状。,我们利用了在Xfoil模拟上训练的扩散概率模型,以合成以给定的空气动力学特征和约束条件来调节的二维机翼几何形状。用Bernstein多项式将机翼参数化,以确保生成的设计的平滑度。我们表明,这些模型能够为相同的需求和约束生成各种候选设计,从而有效地探索了设计空间,以提供优化过程的多个起点。但是,候选设计的质量取决于数据集中模拟设计的分布。重要的是,该数据集中的几何形状必须满足在扩散模型条件中未使用的其他要求和约束,以确保生成的几何形状是物理的。
摘要 - 医学成像应用在人体解剖学,病理学和成像领域方面高度专业。因此,用于培训医学成像中深度学习应用的注释培训数据集不仅需要高度准确,而且还需要多样化,并且足够大,以涵盖与这些规格有关的大多数合理示例。我们认为,实现此目标可以通过带有注释的合成图像的受控生成框架来促进,需要多个条件规格作为输入才能提供控制。我们采用denoising扩散概率模型(DDPM)来训练肺CT域中的大规模生成模型,并根据无分类器采样策略进行扩展,以展示一个这样的生成框架。我们表明,我们的方法可以产生带注释的肺CT图像,这些图像可以忠实地代表解剖学,令人信服地愚弄专家将其视为真实。我们的实验表明,这种性质的受控生成框架几乎可以超过几乎所有最新的图像生成模型,而在接受类似的大型医疗数据集接受培训时,在生成的医学图像中实现了解剖学一致性。
•保险和多元化•交易和对冲识别投资或分配代理商的资本监控机会的机会,例如公司控制促进商品和服务的交换,例如通过货币和交流媒体•更普遍地,创建(→)流动资产财务创新,例如证券化,导数,加密货币
摘要。由于各种物理降解因子和检测到的少量计数,从低剂量正电子发射断层扫描(PET)扫描中获得了高质量的图像是具有挑战性的。基于高级分布学习的生成模型(一种基于高级分布学习的生成模型)的转化扩散概率模型(DDPM)显示了各种计算机视觉任务的有希望的性能。但是,目前DDPM主要以2D模式进行研究,该模式的限制是pet图像denoising的局限性,因为通常以3D模式获取,重建和分析PET。在这项工作中,我们提出了一种用于PET Image DeNoising的3D DDPM方法,该方法采用3D卷积网络来训练得分函数,并启动网络学习3D分布。使用从西门子传记视觉Quadra扫描仪(轴向视野> 1m)获取的总体体18 F -FDG PET数据集来评估3D DDPM方法,因为这些总体数据集需要的3D操作最多可从不同的轴向液体中利用丰富的信息。所有模型均在1/20低剂量图像上训练,然后在1/4、1/20和1/50低剂量图像上进行评估。实验结果表明,在定性和定量评估中,3D DDPM明显优于2D DDPM和3D UNET,能够从低质量PET图像中恢复更精细的结构和更准确的边缘轮廓。此外,当训练和测试数据之间存在噪声水平不匹配时,3D DDPM显示出更大的鲁棒性。最后,就不确定性而言,将3D DDPM与2D DDPM进行比较,发现3D DDPM对可重复性的信心更高。
为了人类的运气,与小型太阳能相比,太阳能较小。即使这些是个好消息,这也使训练能够建模太阳能活动的机器学习算法具有挑战性。因此,太阳能监视应用程序(包括量)是预测的,因此由于缺乏输入数据而征服。为了克服这个问题,可以利用生成深度学习模型来产生代表太阳活动的合成图像,从而补偿大事件的稀有性。本研究旨在开发一种可以生成太阳的合成图像,具有特定强度的能力。为了实现我们的目标,我们引入了一个脱氧概率模型(DDPM)。我们用SDO航天器上大气图像组件(AIA)仪器进行了精心制作的数据集训练它,该仪器特别是171Å带,该乐队捕获了冠状环,纤维,纤维,浮雕和活动区域的图像。使用Heliophysics事件知识库选择了来自AIA的浮动图像后,采用X射线测量来基于太阳量(a,b,c,m,x)对每个图像进行分类,从而允许对漏水事件进行时间定位。使用群集指标,FRéchetInception距离(FID)和F1分数评估生成模型性能。我们演示了最新的结果,可以产生太阳图像并进行两个使用合成图像的实验。第一个实验训练有监督的分类器以识别这些事件。第二个实验训练基本太阳能是预测指标。我们认为,这只是DDPM与太阳能数据使用的开始。实验证明了其他合成样本对解决不平衡数据集问题的有效性。仍然可以更好地了解太阳能竞赛中的DINOISING DI遇到的概率模型的发电能力是预测,并将其应用于其他深度学习和物理任务,例如AIA到HMI()图像翻译。
工程设计方法旨在生成满足所需性能要求的新设计。过去的工作已直接将有条件的生成对抗网(CGAN)引入了这一领域,并在单点设计问题中获得了有希望的结果(一个在一个工作条件下的性能要求)。但是,这些方法假设性能要求分布在分类空间中,这在这些scenarios中是不合理的。尽管连续有条件的gan(CCGANS)引入了阴性风险最小化(VRM),以减少该假设造成的绩效损失,但它们仍然面临以下挑战:1)CCGANS无法处理多点设计问题(在多个工作条件下的多个绩效要求)。2)由于阴道损失的高计算复合物,他们的训练过程是耗时的。为了解决这些问题,提出了一个连续的条件扩散概率模型(CCDPM),第一次将扩散模型引入工程设计区域,将VRM引入扩散模型。ccdpm采用一种称为多点设计抽样的新型抽样方法来处理多点设计概率。此外,在CCDPM的训练过程中,使用K-D树来缩短替代损失的计算时间,并将训练过程加快了2-300次。关于合成问题和三个实现世界设计问题的实验表明,CCDPM的表现优于最先进的GAN模型。