Loading...
机构名称:
¥ 2.0

构建类似人类的综合性人工认知系统,即通用人工智能 (AGI),是人工智能 (AI) 领域的圣杯。此外,使人工系统实现认知发展的计算模型将成为大脑和认知科学的极好参考。本文介绍了一种通过集成基本认知模块来开发认知架构的方法,以实现对整个模块的训练。这种方法基于两个想法:(1) 受大脑启发的人工智能,学习人类大脑结构以构建人类水平的智能;(2) 基于概率生成模型 (PGM) 的认知架构,通过集成 PGM 来开发用于发展机器人的认知系统。所提出的开发框架称为全脑 PGM (WB-PGM),它与现有的认知架构有着根本的不同,因为它可以通过基于感觉运动信息的系统持续学习。在本文中,我们描述了 WB-PGM 的原理、基于 PGM 的基本认知模块的现状、它们与人脑的关系、认知模块整合的方法以及未来的挑战。我们的发现可以作为大脑研究的参考。由于 PGM 描述了变量之间的明确信息关系,因此 WB-PGM 为从计算科学到脑科学提供了可解释的指导。通过提供此类信息,神经科学的研究人员可以向人工智能和机器人技术的研究人员提供反馈,说明当前模型在参考大脑方面缺乏什么。此外,它可以促进神经认知科学以及人工智能和机器人技术研究人员之间的合作。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。

全脑概率生成模型

全脑概率生成模型PDF文件第1页

全脑概率生成模型PDF文件第2页

全脑概率生成模型PDF文件第3页

全脑概率生成模型PDF文件第4页

全脑概率生成模型PDF文件第5页

相关文件推荐

2022 年
¥4.0
2024 年
¥1.0
2024 年
¥2.0