MicroRNA(miRNA)是一小群内源性单链非编码RNA,长度为20-22个核苷酸,参与多种细胞过程,如细胞存活、细胞死亡、分化和增殖。它们通过直接结合特定靶mRNA起作用,从而抑制基因表达(15,16)。多项研究表明,miRNA被认为是多种癌症(如结肠癌和乳腺癌)的重要诊断和治疗生物标志物(17,18)。此外,miRNA参与几乎所有的血液学过程,表明miRNA在CLL中发挥着重要作用(19-21)。在大多数CLL病例中都观察到了遗传异常。这些畸变包括中等风险的11q缺失、低风险的13q缺失和高风险的17p缺失(22)。13q14缺失是最常见的遗传畸变,在超过
在本研究中,我们提出了一种多功能的表面工程策略,即将贻贝粘附肽模拟和生物正交点击化学相结合。本研究的主要思想源自一种新型受贻贝启发的肽模拟物,其具有可生物点击的叠氮基(即多巴胺 4-叠氮化物)。与贻贝足蛋白的粘附机制(即共价/非共价共介导的表面粘附)类似,受生物启发和可生物点击的肽模拟物多巴胺 4-叠氮化物能够与多种材料稳定结合,例如金属、无机和有机聚合物基材。除了材料通用性之外,多巴胺 4-叠氮化物的叠氮残基还能够通过第二步中的生物正交点击反应与二苄基环辛炔 (DBCO-) 修饰的生物活性配体进行特定结合。为了证明该策略适用于多样化的生物功能化,我们在不同的基底上将几种典型的生物活性分子与 DBCO 功能化进行生物正交结合,以制造满足生物医学植入物基本要求的功能表面。例如,通过分别嫁接防污聚合物、抗菌肽和 NO 生成催化剂,可以轻松将抗生物污损、抗菌和抗血栓形成特性应用于相关的生物材料表面。总体而言,这种新型表面生物工程策略已显示出对基底材料类型和预期生物功能的广泛适用性。可以想象,生物正交化学的“清洁”分子修饰和受贻贝启发的表面粘附的普遍性可以协同为各种生物医学材料提供一种多功能的表面生物工程策略。
摘要。已对塑料的溶胀和增塑剂含量以及食物模拟剂的乙醇含量对基于聚乳酸(PLA)基于食物的食物接触塑料的三种稳定剂型添加剂的迁移动力学的影响。结果证明了影响物质在聚合物矩阵中扩散的参数,即,肿胀,增塑和移民的大小是从PLA到乙醇食品的迁移的决定性因素。肿胀和迁移都可以忽略不计。相反,委员会法规(欧盟,欧盟)的具体迁移限制超过10/2011。迁移是通过增塑促进的,但是只有当应用食品模拟剂膨胀塑料(至少20%(v/v)乙醇含量)时,才能观察到这种作用。以前尚未显示增塑剂增强迁移效应对肿胀的依赖性。当增塑导致迁移增加时,这也导致了较短时间内的特定迁移限制。即使基于PLA的塑料专门用于储存Hy-Drophilic Food,这是这些产品中最常见的应用领域。这些结果可以支持改善消费者安全和主动包装开发。
摘要:细胞凋亡是一种高度保守的机制,可以清除不需要的细胞。线粒体凋亡由 B 细胞淋巴瘤 (BCL-2) 家族控制,包括抗凋亡和促凋亡蛋白。抗凋亡 BCL-2 成员 (BCL-2、MCL-1、BCL-X L ) 失调导致的细胞凋亡逃避是癌症的常见标志。为了将这种失调转变为脆弱性,研究人员开发了 BH3 类似物,这是一种通过干扰抗凋亡蛋白来恢复肿瘤细胞有效凋亡的小分子。其中,维奈克拉是一种强效的选择性 BCL-2 抑制剂,在成熟 B 细胞恶性肿瘤(包括慢性淋巴细胞白血病、套细胞淋巴瘤和多发性骨髓瘤)中表现出最强的临床活性。然而,最近描述了原发性和获得性耐药机制,并且必须考虑细胞遗传学异常、BCL-2 家族表达和体外药物测试等几个特征,以预测对 BH3 模拟物的敏感性并帮助识别能够产生反应的患者。克服对 BH3 模拟物的耐药性的医疗需求支持对创新组合策略的评估。目前正在评估包括 MCL-1 靶向 BH3 模拟物在内的新型药物,它们可能代表该领域的新治疗选择。本综述总结了有关维奈克拉和其他 BH3 模拟物治疗成熟 B 细胞恶性肿瘤的当前知识。
摘要:自发现第一个微小RNA(miRNA,miR)以来,人们对miRNA生物学的理解已大大扩展。miRNA参与并被描述为癌症主要特征的主要调节器,包括细胞分化、增殖、存活、细胞周期、侵袭和转移。实验数据表明,可以通过靶向miRNA表达来改变癌症表型,并且由于miRNA充当肿瘤抑制因子或致癌基因(oncomiR),它们已成为有吸引力的工具,更重要的是,成为癌症治疗药物开发的新靶点。通过使用miRNA模拟物或靶向miRNA的分子(即小分子抑制剂,如抗miRS),这些疗法在临床前环境中显示出良好的前景。一些以miRNA为靶向的疗法已扩展到临床开发,例如用于治疗癌症的miRNA-34模拟物。在这里,我们讨论了 miRNA 和其他非编码 RNA 在肿瘤发生和抗药性中的作用,并总结了一些最近成功的系统性递送方法以及 miRNA 作为抗癌药物开发靶标的最新进展。此外,我们还全面概述了临床试验中的模拟物和抑制剂,最后列出了基于 miRNA 的临床试验。
HIV-1 是全球面临的重大健康挑战。开发有效的疫苗和治疗方法是当务之急。开发针对蛋白质特定表位的抗体反应的疫苗已显示出良好的前景,但 HIV-1 的遗传多样性阻碍了这一进展。提供有效和广谱中和 HIV-1 感染的治疗策略非常可取。方法:我们研究了纳米工程 CD4+ T 细胞膜包覆纳米颗粒 (TNP) 包覆 DIABLO/SMAC 模拟物 LCL-161 或 AT-406(也称为 SM-406 或 Debio 1143)的潜力,既可以中和 HIV-1,也可以选择性地杀死 HIV-1 感染的静息 CD4+ T 细胞和巨噬细胞。结果:载有 DIABLO/SMAC 模拟物的 TNP 表现出卓越的中和广度和效力,并通过自噬依赖性细胞凋亡选择性杀死 HIV-1 感染细胞,同时不会对旁观者细胞产生药物诱导的脱靶或细胞毒性作用。对自噬早期阶段的基因抑制会消除这种影响。结论:载有 DIABLO/SMAC 模拟物的 TNP 有可能用作治疗剂来中和无细胞 HIV-1 并特异性地杀死 HIV-1 感染细胞,作为 HIV-1 治愈策略的一部分。
1综合蛋白质科学中心,部门,Liudwigy,Liudwig House Unittzen,813777 Menmy; valentina.corvaglia@cup.lmu.de(V.C. div>); ivan.huc@lmu.de(i.h.) div>2 g,); stephanie.letast@univ-tours.fr(S.L. div>); caroline.deeweult@univ-tours.fr(C.D.-S。);该研究的尼古拉斯·维尔·迪福勒(Nicolas Vuel-Dofuller),可以提供蒙特·莫尔(Moselle Day),uny(34298 Mouro的UO29,Francondion,Frances veroniqui.garrambois@garrambois@icm.unanancer.fr(V.G. div>)); aurally.garcin@inserm.fr(I.); celine.gongora@inserm.fr(C.G. div>); maguy.delrio@icm.unicancs.fr(M.D.R.) div>* correscrapsece:philip.pourquier@inserm.fr;电话。 div>: + 33-467-613-765;传真: + 33-467-613-787†V.C. div>和I.A.M.A. div>同等贡献。 div>
已完成的支持 2020-23 Mathers 基金会研究奖 (MF-2006-00926) $300,000 肠道微生物和代谢物在儿童乳糜泻发病机制中的作用 Altindis E (PI) 2022-23 JDRF 创新奖 (1-INO-2022-1108-AN) $110,000 微生物胰岛素模拟物和体液免疫反应在 1 型糖尿病发病中的作用 Altindis E (PI) 2019-22 Mathers 基金会研究奖 (MF-1905-00311) $300,000 微生物胰岛素模拟物在 1 型糖尿病自身免疫中的作用 Altindis E (PI) 2018-21 NIH、NIDDK K01 研究科学家发展奖 (3K01DK117967) $445,357 病毒胰岛素样肽 (VILP) 及其对哺乳动物细胞的活性 Altindis E (PI)