ESCC,QML-V或JAN合格产品的ST投资组合包括二极管,双极晶体管,功率MOSFET以及逻辑,接口,模拟和电源管理集成电路。st的专有技术组合包括平面,SIC和GAN(离散),130 nm混合信号CMO,BCD(POWER ICS),SIGE 130 nm和55 nm和55 nm(RF ICS),以及65 nm和65 nm和28 nm Bumb和28 nm Fdsoi(高密度混合和cmignal和Rensignal和Remsignal and Imbers),以及RFF),以及CMF),CMS(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)。这些技术大多数证明了Rad-Hardness功能。st Rennes Plant是ESCC,QML和JAN认证。它支持从LCC-2到CLGA625的电线粘合陶瓷密封包装,在陶瓷和有机基材上翻转芯片,直至CLGA 1752 / BGA1752。
摘要 — 在容错量子计算机中,量子码有望实现保护量子信息和允许容错门操纵量子信息的相互冲突的目的。我们引入了一种对此类门施加限制的新技术,并将该技术应用于包含在垂直扇区内的一类称为超图乘积码的量子码。这些代码由一对经典线性代码输入构成,并推广了 Kitaev 曲面代码,它是经典重复代码的超图乘积。我们为这些输入代码提供了一个必要条件,在此条件下,得到的超图乘积代码具有限制于 Clifford 群的横向门。我们推测所有 [ n, k, d ] Gallagher 码(d ≥ 3 且 k ≤ n/ 2)都满足此条件。这项工作是对 Bravyi 和 K¨onig 提出的论证的概括,并且我们还推测这是对 Jochym-O'Connor 等人提出的最新不相交概念的细化。
1 1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。 迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。 这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。 随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。 在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。 引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。 通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。小分子和生长因子的组合被用来指导编辑的细胞逐步分化为运动神经元,以证明可以为下游应用生成相关的疾病细胞。关键字:CRISPR,ISEGONIC IPSC,ALS,SOD1 -I114T,SOD1 -G93A,FUS -H517Q
裂谷热 (RVF) 是一种人畜共患的蚊媒布尼亚病毒性疾病,与反刍动物的高流产率、新生儿死亡、胎儿畸形以及人类的轻度至重度疾病有关。疫苗接种显著降低了疫情期间母羊的流产率和新生羔羊的死亡率,并在牛中诱导了免疫力。灭活 RVF 疫苗的评估需要体内和体外技术。本研究旨在通过参考血清评估横向流动装置 (LFD) 与血清中和试验 (SNT) 的敏感性,以确定接种灭活 RVF 疫苗的绵羊的体液免疫反应。在三组绵羊中接种了三批灭活 RVF 疫苗。然后每周采集它们的血清样本,并进行 SNT 和 LFD 检测。结果发现,在1:128稀释度的血清中LFD的灵敏度为95%,而接种后第四周进行的SNT显示抗体滴度分别为32、64和32。而疫苗批次1、2和3在1:32、1:128和1:64稀释度时LFD的灵敏度为95%。这些结果表明,LFD可用于检测接种绵羊对裂谷热病毒灭活疫苗的免疫应答,并且将来可以将其改进为定量检测。关键词:横向流动装置,裂谷热病毒,RVFV灭活疫苗,疫苗评价
这项工作证明了一种新型横向阵风发生器的可行性,该发生器能够产生可控的时变阵风,而不会增加流动设施大面积内的湍流水平。新的阵风发生器概念基于涡流发生器阵列 ( VGA ),该阵列沿着设施测试段的某一给定流向位置的一面墙壁布置。使用这种装置,可以在风洞中演示阶梯式阵风和幅度为自由流速度 5.7% 的正弦阵风。对于 10 m ∕ s 的自由流速度,正弦阵风在自由流方向上产生几乎纯谐振动,角度为 3.25 度,频率为 2 Hz。简化的涡流阵列模型被证明是设计新型阵风发生器的可行工具。本研究重点展示 VGA 阵风发生器的概念,同时将发生器的设计优化和阵风强度和均匀性的极限探索留待未来工作。
原子量子圈(“旋转”)与捕获的离子库仑晶体中的集体运动之间的抽象激光控制的纠缠需要从激光器进行条件动量转移。由于自旋依赖性力是从自旋光相互作用中的空间梯度得出的,因此该力通常是纵向的,与平均激光K -vector(或两个梁的K-矢量差异)平行且成比例,这构成了可访问的自旋 - 运动偶联的方向和相对幅度。在这里,我们显示了如何由于其横向发射中的梯度而垂直于单个激光束传递动量。通过控制离子的位置的横向梯度通过光束塑造,可以调节边带和载体的相对强度,以优化所需的相互作用并抑制不需要的,抗谐振的效果,从而降低了栅极的限制。我们还讨论了这种效果如何在最近的实验中扮演着未引人注目的角色。
ge是一种集团半导体,广泛用于基于SI的电子设备,因为独特的优势在于与标准互补金属氧化物半导体(CMOS)处理,出色的载体迁移率,相对丰度和低毒性[1]。最近,GE吸引了越来越多的研究兴趣,用于制造具有成本效益和有效的功能性电子光综合电路(EPICS)[1,2]。在室温下,GE的直接带隙为0.8 eV,对应于1,550 nm处的吸收边缘。1,300 nm和1,500 nm之间的强光吸收使GE成为光纤电信设备的理想光电探测器(PD)材料[3]。但是,由于SI和GE之间的4.2%晶格不匹配,将GE直接集成在SI底物上是一项挑战。已经采取了强烈的努力,使用不同的方法(包括两步生长[4,5]和分级的SIGE缓冲液[6],为了制造高性能GE正常生命值PDS [3,7]和波导(WG)PDS(WGPDS)PDS(WGPDS)[8,9] [8,9]。但是,GE活动层和GE/SI接口相对有缺陷,从而降低了设备性能。此外,
太阳能转换过程不仅存在于太阳能电池中,也存在于光催化中,涉及太阳光收集和光激发电荷载流子分离/传输。[8,9] 异质结构是将具有不同性质的材料集成在一起,通常可以收集来自多种组分的广泛太阳光,并且受益于异质界面形成的内部电场而具有显著的光激发电荷分离/传输特性。[10] 因此,探索合适的组分来构建异质结构是提高太阳能转换效率的一种有效且简便的策略。如今,二维材料由于其高比表面积、[11] 大量的表面暴露原子、[12] 以及优异的机械、光学和电子性能,在光电器件、催化和太阳能转换领域引起了极大的研究兴趣。[13,14] 得益于层状结构特性,二维材料易于构建成异质结构。通常,二维异质结构包括垂直异质结构(其中各种二维材料层垂直堆叠)[15] 和横向异质结构(其中多个二维材料横向无缝缝合)。[16] 目前报道的二维异质结构大多
结论:这些结果虽然仅来自一名患者,但表明由计算机生成的视觉和感官刺激支持的心理训练可导致肌肉力量和活动的有益变化。心理训练后肌肉激活度增加和 EMG 活动空间分布改变可能表明双侧上肢先天性横向缺陷患者的斜方肌运动激活策略在训练过程中发生了功能可塑性。患者在训练后亚最大收缩过程中空间分布的显著变化可能与肌肉神经驱动的变化有关,这与特定的(患者不熟悉的)运动任务相对应。这些发现与双侧上肢先天性横向缺陷患者的神经肌肉功能康复(尤其是上肢移植前后)以及基于 EMG 的假肢的开发有关。
摘要 原核生物通过横向基因转移 (LGT) 从环境中获取基因。环境 DNA 的重组可以防止有害突变的积累,但第一批真核生物放弃了 LGT,转而选择有性生殖。我们在此开发了一个单倍体群体经历 LGT 的理论模型,其中包括两个新参数,即基因组大小和重组长度,这两个参数被以前的理论模型忽略了。真核生物的复杂性与更大的基因组有关,我们证明 LGT 的好处会随着基因组大小的增加而迅速下降。只有通过增加重组长度(与基因组大小相同的数量级)才能抵抗较大基因组的退化——就像在减数分裂中发生的那样。我们的研究结果可以解释在早期真核生物进化过程中对有性细胞融合和相互重组进化的强大选择压力——减数分裂性别的起源。