药物诱导的肝损伤(DILI)是由药物引起的严重不良反应,可能导致急性肝衰竭甚至死亡。许多努力集中在减轻与潜在DILI相关的风险上。在其中,定量结构活性关系(QSAR)被证明是早期肝毒性筛查的有价值工具。它的优点不包括对物质物质和快速交付结果的要求。深度学习(DL)最近取得了快速的进步,并已用于开发QSAR模型。本综述讨论了DL在预测DILI中的使用,重点是采用广泛的化学结构数据集及其相应的DILI结果的QSAR模型的开发。我们对各种DL方法进行了全面的评估,与传统机器学习(ML)方法相比,并探讨了DL技术在其可解释性,可伸缩性和概括性方面的优势和局限性。总体而言,我们的综述强调了DL方法的潜力增强DILI预测,并为未来的途径提供了开发预测模型以减轻人类稀有风险的见解。
摘要:蛋白酶体抑制剂是针对蛋白酶体的蛋白水解活性的部分,在某些血液学恶性肿瘤中表现出效率,在包括胶质细胞瘤(GBM)在内的其他类型的癌症中表现出效率。它们会干扰蛋白酶体调节的蛋白质水平,并导致GBM细胞的细胞周期抑制和凋亡。细胞周期抑制剂p21和p27的积累,以及生存的分子NFKB,Survivin和MGMT的水平降低,蛋白酶体抑制剂的细胞毒性是单独使用或与抗GBM细胞固定药物替莫泽尔疗法(TMZ)相结合时的蛋白酶体抑制剂的基础。在临床前研究中收集的证据证实了采用了两种最有前途的蛋白酶体抑制剂Bortezomib和Marizomib的临床试验的设计。最初评估了药物安全性剂量,最大耐受剂量以及与其他药物的相互作用,主要是在复发性GBM患者中。在2021年设计并完成了对接受Marizomib作为Stupp方案辅助的新诊断为GBM患者的III期研究,Stupp方案将患者作为平行控制臂进行了设计和完成。这项III阶段研究的数据表明,马里佐米不能改善GBM患者的PFS和OS;但是,对每个患者肿瘤的遗传和表观遗传背景的进一步分析可能会阐明单个患者对蛋白酶体抑制的敏感性。GBM细胞的突变和表观遗传组成,例如对TP53和PTEN的遗传改变或MGMT启动子甲基化水平实际上可能决定对蛋白酶体抑制的反应。
在土壤中存在多种细菌,但是在根际地区,大多数微生物有助于植物捍卫疾病并促进营养吸收。这些微生物得到了植物的支持,它们被称为植物生长 - 促进根瘤菌(PGPR)。PGPR有可能以对环境更有利的方式替代化学肥料。氟化物(F)是高度上升的,自然存在的污染物之一,由于其抗菌能力而可能对PGPR造成危害。F与地下水系统中不同细菌物种的相互作用尚不清楚。然而,PGPR与根际区域中植物的相互作用减少了污染物的有害作用,并增加了植物忍受非生物应激的能力。许多研究表明,PGPR已开发出F防御机制,其中包括外排泵,细胞内的隔离,酶修饰,增强的DNA修复机制,排毒酶,离子转运蛋白/抗胞蛋白,F核糖开关和遗传突变。这些耐药性特征经常是通过从高F污染区域分离PGPR或在实验室条件下将细胞暴露于氟化物中发现的。众多研究已经确定了F-F Transorters和F.植物的众所周知靶标的其他F转运蛋白和重复的F.植物易于F。pgprs可以用作土壤环境的有效f生物化体。环境生物技术专注于创建遗传修饰的根瘤菌,可以随着时间的流逝而降解F污染物。本综述着重于对当代生物技术技术(例如基因编辑和操纵方法)进行全面分析,用于改善植物 - 微生物相互作用以进行F修复,并表明PGPR在改善土壤健康和降低F毒性的有害影响方面的重要性。还强调了微生物援助领域的最新发展,在治疗F污染环境中也得到了强调。
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'
癌症免疫疗法基于以下原则:患者可以利用患者自身的免疫系统拒绝恶性肿瘤。免疫癌症的概念是通过免疫监测来消除许多早期癌症的概念,并通过免疫剂量小鼠的实验和免疫疾病个体的流行病学研究来支持[1]。癌细胞必须变得较少的免疫原性或禁用免疫学成分,以生存并分布在整个体内。目前在诊所或开发中使用了许多癌症抗药性技术,例如细胞因子,细胞疗法,用于基因转移的病毒载体和基于抗体的疗法[2]。总的来说,这些治疗方法代表了癌症治疗的范式转移,它通过靶向宿主免疫反应中的关键途径和细胞类型而不是癌细胞,并且已经成功地改善了固体瘤和血液学恶性肿瘤患者的临床结果[3-6]。抗原特异性T细胞受体和辅助受体是激活T细胞的信号的传递所必需的[7]。这些附件受体可增强或抑制TCR介导的信号。辅助受体CTLA-4和PD-1(被激活的T细胞)充当负调节剂,可抑制T细胞响应[8]。通常,“免疫检查点阻滞”一词是指通过使用拮抗单克隆抗体来促进T细胞免疫的治疗策略[9]。免疫检查点抑制剂调节免疫系统,这样做可以沉淀一组独特的副作用,称为免疫相关的不良事件(IRAE)。这些与传统化学治疗剂的毒性不同,由于其免疫机制[10-12]。iraes可以影响皮肤(例如,维多利戈和自身免疫性皮炎)[12],胃肠道(gi)区域(结肠炎)[13],肺(肺炎)[14-16] [14-16],内分泌器官(胸骨炎,甲状腺炎或过度蛋白质肾上腺抑制作用,肾上腺肾上腺肾上腺肾上腺抑制作用,或抑制性肾上腺肾上腺肿瘤,或不适症状肾上腺炎,垂体炎)[17,18],肌肉骨骼系统(关节炎,肌炎)[19],肾脏(肾炎)[20] [20],肝脏(肝炎)[21],中枢或周围神经系统(神经性病,脑病,脑炎)[22] [22],以及眼睛炎炎/IRIPIS/IRIPIS [23] [23];
ABSTRACT Background Hematologic toxicities, including coagulopathy, endothelial activation, and cytopenias, with CD19-targeted chimeric antigen receptor (CAR) T- cell therapies correlate with cytokine release syndrome (CRS) and neurotoxicity severity, but little is known about the extended toxicity profiles of CAR T-cells targeting alternative antigens.该报告表征了CD22 CAR T细胞后观察到的血液学毒性及其与CRS和神经毒性的关系。方法我们回顾性地表征了与CRS在1期抗CD22 CAR T细胞研究中的血液学毒性相关的儿童和年轻人,患有复发/难治性CD22+血液学恶性肿瘤。其他分析包括血液学毒性与神经毒性的相关性以及探索淋巴细胞淋巴病毒细胞增多毒性毒性(HLH)对骨髓恢复和细胞质的影响。凝血病被定义为出血或异常凝血参数的证据。血液学毒性通过不良事件的常见术语标准v.4.0分级。在接受CD22 CAR T细胞的53例患者中,有43名(81.1%)患者完全缓解了CD22 CAR T细胞。十八(34.0%)患者经历了凝血病,其中16例患有轻度出血(通常是粘膜出血)的临床表现,这些表现通常是在CRS分辨率后逐渐减弱的。三个具有血栓性微血管病的表现。单细胞分析表明,与CD19表达相反,CD22不在少突胶质细胞前体细胞或神经血管细胞上,而是在成熟的少突胶质细胞上可见。患有凝血病的患者具有较高的铁蛋白峰,D-二聚体,凝血酶原时间,国际标准化比率(INR),乳酸脱氢酶(LDH),组织因子,凝血酶原片段F1+2和溶剂血管细胞粘附分子 - S-VCAM-1(S-VCAM-1)。尽管HLH样毒性和内皮激活的发生率相对较高,但总体神经毒性通常比CD19 CAR T细胞报道的严重程度不高,从而促使其他分析以探索中枢神经系统(CNS)中CD22的表达。最后,在获得的人中
摘要简介:人类表皮生长因子受体两个(HER2)靶疗法已彻底改变了对HER2阳性乳腺癌的治疗。从曲妥珠单抗开始,早期的III期试验已经强调了其明显的心脏毒性,尽管在新一代药物中,但在较小程度上也存在。鉴于心血管疾病的患者人群不断增长,至关重要的是,要进行适当的长期随访,以防止与心脏毒性发展有关的发病率。涵盖的区域:本综述讨论了HER2靶向疗法的心脏毒性基础的作用机制,以及有关这些药物毒性的主要临床证据。 此外,讨论了使用HER2靶向疗法开始治疗之前的患者评估模式,以及有关心脏毒性随访和管理的主要证据。 专家意见:新HER2药物的心脏毒性机制需要进一步研究,同样,需要实施预防,监测和识别HER-2诱导的心脏毒性的方法。 尽管一些研究强调了心脏生物标志物作为心脏氧化城市的预测因素的有效性,但它们的实际有用性和时机仍在争论中。 需要进一步的研究来评估可能的药理学一级预防的有效性。涵盖的区域:本综述讨论了HER2靶向疗法的心脏毒性基础的作用机制,以及有关这些药物毒性的主要临床证据。此外,讨论了使用HER2靶向疗法开始治疗之前的患者评估模式,以及有关心脏毒性随访和管理的主要证据。专家意见:新HER2药物的心脏毒性机制需要进一步研究,同样,需要实施预防,监测和识别HER-2诱导的心脏毒性的方法。尽管一些研究强调了心脏生物标志物作为心脏氧化城市的预测因素的有效性,但它们的实际有用性和时机仍在争论中。需要进一步的研究来评估可能的药理学一级预防的有效性。
fi g u r e 3推断出的蓝细菌16S rRNA丰度(GCN/g湿沉积物)与来自三个湖泊沉积物核心的高通量测序的时间。顶部面板按顺序显示分布,中间和底部面板分别显示了怀旧和chroocococcales中存在的属。数十年来,每个核心都在每个核心内汇总了丰度数据。白线代表每个彩色条内下一个最低分类学水平的细分(例如,属于顺序)。y轴是正方形的,以更好地可视化数据。如果顺序或属未知,则指示下一个最高的分类学分配。
药物发现和开发是一个漫长,昂贵且高风险的过程,大约需要10年的时间,每种新药的平均成本超过15亿美元,以供临床使用。[1]其中一个存在于一个事实中,即仅在临床试验阶段丢弃90%的候选药物。[1]不可控制的毒性代表了一个主要的流失因子,占此类失败的总体30%,[2]由肝和心脏不良影响带领。[3]此外,药物诱导的心脏和肝脏不良反应共同占与安全性相关的75%以上,并吸引了来自FDA批准的药物市场。[4]这表明目前使用临床前方法评估药物安全性,主要依赖于2D细胞培养物和动物模型,这不足以预先与人类相关的结果。[5]最近,在微流体和微生物技术的基础上,已经花费了巨大的努力来开发先进的人类微型组织模型,以更好地代表人类的体外药物筛查和安全应用。在这种情况下,片上器官(OOC)代表了在体外模拟人体器官的基本功能的创新和可靠的工具[6],并且在临床翻译能力方面证明,与之前提到的传统临床前系统相比,这两种功能都具有前所未有的优势。[7]包含单个器官的不同OOC解决方案(即肝脏或心脏)已提出形成药物安全研究。[15]在肝脏心脏模型中引起了极大的兴趣,这些模型可以模仿和预测药物肝变代后靶向心脏的毒性。[8–11]但是,只有很少的平台能够结合对药物的靶标和靶向效应的检测,从而有效地再现了体内药物代谢过程。[12–14]多器官片(MOOC)代表了一种颠覆性解决方案,用于同时研究与药物相关的几个器官的影响,具有巨大的承诺,可以在临时性试验中有效预测药物毒性,并最终防止意外的临床药物安全问题。[8]在这种情况下,Oleaga等人[16]开发了一个由五个腔室组成的Pumpless重力驱动的MOOC平台,该平台可以整合肝脏和心脏模块,能够预测肝脏代谢后的环磷酰胺和Terfena-ninine的心脏毒性副作用。该商业设备也用于药代动力学药物研究[17]另一个例子
b'lithium-o 2(li o 2)细胞是一类引人入胜的LI金属空气电池,具有最高的理论特异性能密度(3500 WHKG 1)。[1]尽管如此,直到他们的商业化成为现实,仍然需要漫长的旅程。从物质的角度来看,已经在开发更有效的电解质方面做出了许多努力,这些电解质符合广泛的属性,例如高离子电导率或更环保的电解质。[2]从这个意义上讲,由于良好的运输特性,非挥发性,低毒性的结合,离子液体(ILS)似乎是常规易燃有机溶剂的一个很好的替代品(请注意,需要仔细分析此特性),[3] [3]非耐受性和对超氧自由基的稳定性。[4,5]李O 2电池中研究最多的离子液体是基于咪唑 - 和吡咯烷菌的[4,6 \ xe2 \ x80 \ x939]和基于氟的牛灰(即bis(trifluororomethananesulfonyllfonyl)Imiide,tffone)。[10]最近,较少使用的四烷基铵基于ILS,例如N,N,N-二乙基-N-甲基-N-(2-甲氧亚乙基)BIS(三氟甲磺酰硫磺酰基)imide([Deme] [Deme] [deme] [tfsi]),已显示出适用于这种类型的彩色彩色彩色的物体。'