药物诱导的肝损伤(DILI)是由药物引起的严重不良反应,可能导致急性肝衰竭甚至死亡。许多努力集中在减轻与潜在DILI相关的风险上。在其中,定量结构活性关系(QSAR)被证明是早期肝毒性筛查的有价值工具。它的优点不包括对物质物质和快速交付结果的要求。深度学习(DL)最近取得了快速的进步,并已用于开发QSAR模型。本综述讨论了DL在预测DILI中的使用,重点是采用广泛的化学结构数据集及其相应的DILI结果的QSAR模型的开发。我们对各种DL方法进行了全面的评估,与传统机器学习(ML)方法相比,并探讨了DL技术在其可解释性,可伸缩性和概括性方面的优势和局限性。总体而言,我们的综述强调了DL方法的潜力增强DILI预测,并为未来的途径提供了开发预测模型以减轻人类稀有风险的见解。
主要关键词